Article

tRNA biology charges to the front

Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.
Genes & development (Impact Factor: 12.64). 09/2010; 24(17):1832-60. DOI: 10.1101/gad.1956510
Source: PubMed

ABSTRACT tRNA biology has come of age, revealing an unprecedented level of understanding and many unexpected discoveries along the way. This review highlights new findings on the diverse pathways of tRNA maturation, and on the formation and function of a number of modifications. Topics of special focus include the regulation of tRNA biosynthesis, quality control tRNA turnover mechanisms, widespread tRNA cleavage pathways activated in response to stress and other growth conditions, emerging evidence of signaling pathways involving tRNA and cleavage fragments, and the sophisticated intracellular tRNA trafficking that occurs during and after biosynthesis.

0 Followers
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although tRNA modifications have been well catalogued, the precise functions of many modifications and their roles in mediating gene expression are still being elucidated. While tRNA modifications were long assumed to be constitutive, it is now apparent that the modification status of tRNAs changes in response to different environmental conditions. The URM1 pathway is required for thiolation of the cytoplasmic tRNAs tGlu(UUC), tGln(UUG) and tLys(UUU) in Saccharomyces cerevisiae. We demonstrate that URM1 pathway mutants have impaired translation, which results in increased basal activation of the Hsf1-mediated heat shock response; we also find that tRNA thiolation levels in wild type cells decrease when cells are grown at elevated temperature. We show that defects in tRNA thiolation can be conditionally advantageous, conferring resistance to endoplasmic reticulum stress. URM1 pathway proteins are unstable, and hence are more sensitive to changes in the translational capacity of cells, which is decreased in cells experiencing stresses. We propose a model in which a stress-induced decrease in translation results in decreased levels of URM1 pathway components, which results in decreased tRNA thiolation levels, which further serves to decrease translation. This mechanism ensures that tRNA thiolation and translation are tightly coupled and coregulated according to need.
    Molecular Biology of the Cell 11/2014; 26(2). DOI:10.1091/mbc.E14-06-1145 · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.
    Cell 04/2014; 157(3):636-50. DOI:10.1016/j.cell.2014.02.058 · 33.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In eukaryotes, three RNA polymerases are responsible for transcription. These complex enzymes show many similarities with one another, such as several common or highly homologues subunits, while some other features, such as transcript length, diversity, processing, and transcription regulation, are unique to each polymerase. The present article reviews recent publications focusing on the impact of transcription of various RNA species in yeast on posttranscriptional steps such as pre-RNAs processing, transport and decay. Two major conclusions emerge from a critical analysis of the current knowledge. (1) The kinetics of transcription elongation affects cotranscriptional pre-RNA processing. (2) The efficiency of transcription, which is determined by saturating the proteins interacting with RNA, indirectly affects the processing, export and decay of transcripts.
    Gene 04/2013; 526(1). DOI:10.1016/j.gene.2013.04.021 · 2.08 Impact Factor

Preview

Download
2 Downloads
Available from