Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis.

Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America.
PLoS Biology (Impact Factor: 11.77). 08/2010; 8(8). DOI: 10.1371/journal.pbio.1000460
Source: PubMed

ABSTRACT The dentate gyrus has an important role in learning and memory, and adult neurogenesis in the subgranular zone of the dentate gyrus may play a role in the acquisition of new memories. The homeobox gene Prox1 is expressed in the dentate gyrus during embryonic development and adult neurogenesis. Here we show that Prox1 is necessary for the maturation of granule cells in the dentate gyrus during development and for the maintenance of intermediate progenitors during adult neurogenesis. We also demonstrate that Prox1-expressing intermediate progenitors are required for adult neural stem cell self-maintenance in the subgranular zone; thus, we have identified a previously unknown non-cell autonomous regulatory feedback mechanism that controls adult neurogenesis in this region of the mammalian brain. Finally, we show that the ectopic expression of Prox1 induces premature differentiation of neural stem cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lysine acetylation has recently emerged as an important post-translational modification in diverse organisms, but relatively little is known about its roles in mammalian development and stem cells. Bromodomain- and PHD finger-containing protein 1 (BRPF1) is a multidomain histone binder and a master activator of three lysine acetyltransferases, MOZ, MORF and HBO1, which are also known as KAT6A, KAT6B and KAT7, respectively. While the MOZ and MORF genes are rearranged in leukemia, the MORF gene is also mutated in prostate and other cancers and in four genetic disorders with intellectual disability. Here we show that forebrain-specific inactivation of the mouse Brpf1 gene causes hypoplasia in the dentate gyrus, including underdevelopment of the suprapyramidal blade and complete loss of the infrapyramidal blade. We trace the developmental origin to compromised Sox2+ neural stem cells and Tbr2+ intermediate neuronal progenitors. We further demonstrate that Brpf1 loss deregulates neuronal migration, cell cycle progression and transcriptional control, thereby causing abnormal morphogenesis of the hippocampus. These results link histone binding and acetylation control to hippocampus development and identify an important epigenetic regulator for patterning the dentate gyrus, a brain structure critical for learning, memory and adult neurogenesis.
    PLoS Genetics 03/2015; 11(3):e1005034. DOI:10.1371/journal.pgen.1005034 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian hippocampus, a center of neurogenesis in the adult brain, is involved in critical functions such as learning and memory processing. Although there is an overall functional conservation between birds and mammals in the hippocampal region of the brain, there are several morphological differences. A few different models have been proposed for identifying regional and structural homology between the avian and mammalian hippocampus however a consensus is yet to be reached. In this study we have systematically and comprehensively characterized the developing chicken hippocampus at the molecular level. We have identified the time window of neurogenesis and apoptosis during hippocampal development as well as the likely origin and migration path of neurons of the ventral v-shaped region of chick hippocampus. In addition to this we have identified several genes with expression patterns that are conserved between the hippocampus of chicken and mice. Our study provides molecular data that partially supports one of the models reported in literature for structural homology between the avian and mammalian hippocampus. Functional characterization of the genes found in this study to be specifically expressed in the developing chicken hippocampus is likely to provide valuable information on the mechanisms regulating hippocampus development of birds and perhaps could be extrapolated to mammalian hippocampus development as well.
    Developmental Biology 06/2012; 366(6):125-41. · 3.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis.
    Frontiers in Cellular Neuroscience 01/2014; 8:454. DOI:10.3389/fncel.2014.00454 · 4.18 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014