MLL2 is required in oocytes for bulk histone 3 lysine 4 trimethylation and transcriptional silencing.

Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS Biology (Impact Factor: 11.77). 08/2010; 8(8). DOI: 10.1371/journal.pbio.1000453
Source: PubMed

ABSTRACT During gametogenesis and pre-implantation development, the mammalian epigenome is reprogrammed to establish pluripotency in the epiblast. Here we show that the histone 3 lysine 4 (H3K4) methyltransferase, MLL2, controls most of the promoter-specific chromatin modification, H3K4me3, during oogenesis and early development. Using conditional knockout mutagenesis and a hypomorph model, we show that Mll2 deficiency in oocytes results in anovulation and oocyte death, with increased transcription of p53, apoptotic factors, and Iap elements. MLL2 is required for (1) bulk H3K4me3 but not H3K4me1, indicating that MLL2 controls most promoters but monomethylation is regulated by a different H3K4 methyltransferase; (2) the global transcriptional silencing that preceeds resumption of meiosis but not for the concomitant nuclear reorganization into the surrounded nucleolus (SN) chromatin configuration; (3) oocyte survival; and (4) normal zygotic genome activation. These results reveal that MLL2 is autonomously required in oocytes for fertility and imply that MLL2 contributes to the epigenetic reprogramming that takes place before fertilization. We propose that once this task has been accomplished, MLL2 is not required until gastrulation and that other methyltransferases are responsible for bulk H3K4me3, thereby revealing an unexpected epigenetic control switch amongst the H3K4 methyltransferases during development.

  • Source
    07/2014; DOI:10.1038/protex.2014.024
  • [Show abstract] [Hide abstract]
    ABSTRACT: Poised (bivalent) chromatin is defined by the simultaneous presence of histone modifications associated with both gene activation and repression. This epigenetic feature was first observed at promoters of lineage-specific regulatory genes in embryonic stem cells in culture. More recent work has shown that, in vivo, mammalian germ cells maintain poised chromatin at promoters of many genes that regulate somatic development, and that they retain this state from fetal stages through meiosis and gametogenesis. We hypothesize that the poised chromatin state is essential for germ cell identity and function. We propose three roles for poised chromatin in the mammalian germ line: prevention of DNA methylation, maintenance of germ cell identity and preparation for totipotency. We discuss these roles in the context of recently proposed models for germline potency and epigenetic inheritance.
    Development 10/2014; 141(19):3619-26. DOI:10.1242/dev.113027 · 6.27 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zearalenone (ZEA) is a mycotoxin produced by various Fusarium fungi, which has been shown to cause several cases of mycotoxicosis in farm animals and humans. However, there is no evidence regarding the effect of ZEA on mouse egg developmental competence. In this study, we found that the activation rate of maturated oocytes was affected in mice by ZEA treatment, indicating that ZEA affects egg developmental competence. And we explored possible mechanisms of low mouse maturated oocyte developmental competence after ZEA treatment from an epigenetic modification perspective. The fluorescence intensity analysis showed that 5-methyl cytosine level increased after ZEA treatment, indicating that the general DNA methylation level increased in the treated eggs. Moreover, histone methylations were also altered: H3K4me2 as well as H3K9me3 and H4K20me1, me2, me3 levels decreased in eggs that were cultured in high-dose ZEA medium. Thus, our results indicated that ZEA decreased egg developmental competence by affecting the epigenetic modifications.
    Mutagenesis 08/2014; 29(6). DOI:10.1093/mutage/geu033 · 3.50 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014