High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse

Department of Cell & Molecular Physiology, University of North Carolina at Chapel Hill, North Carolina, United States of America.
PLoS ONE (Impact Factor: 3.53). 08/2010; 5(8):e12191. DOI: 10.1371/journal.pone.0012191
Source: PubMed

ABSTRACT Obesity induced by high fat (HF) diet is associated with inflammation which contributes to development of insulin resistance. Most prior studies have focused on adipose tissue as the source of obesity-associated inflammation. Increasing evidence links intestinal bacteria to development of diet-induced obesity (DIO). This study tested the hypothesis that HF western diet and gut bacteria interact to promote intestinal inflammation, which contributes to the progression of obesity and insulin resistance.
Conventionally raised specific-pathogen free (CONV) and germ-free (GF) mice were given HF or low fat (LF) diet for 2-16 weeks. Body weight and adiposity were measured. Intestinal inflammation was assessed by evaluation of TNF-alpha mRNA and activation of a NF-kappaB(EGFP) reporter gene. In CONV but not GF mice, HF diet induced increases in body weight and adiposity. HF diet induced ileal TNF-alpha mRNA in CONV but not GF mice and this increase preceded obesity and strongly and significantly correlated with diet induced weight gain, adiposity, plasma insulin and glucose. In CONV mice HF diet also resulted in activation of NF-kappaB(EGFP) in epithelial cells, immune cells and endothelial cells of small intestine. Further experiments demonstrated that fecal slurries from CONV mice fed HF diet are sufficient to activate NF-kappaB(EGFP) in GF NF-kappaB(EGFP) mice.
Bacteria and HF diet interact to promote proinflammatory changes in the small intestine, which precede weight gain and obesity and show strong and significant associations with progression of obesity and development of insulin resistance. To our knowledge, this is the first evidence that intestinal inflammation is an early consequence of HF diet which may contribute to obesity and associated insulin resistance. Interventions which limit intestinal inflammation induced by HF diet and bacteria may protect against obesity and insulin resistance.

  • Source
    • "e an effect on the phenotype of the mice . Previously our group has compared the gut microbiota of the Lep ob / Lep ob model and its composition to other strains of mice as well as humans ( Krych et al . , 2013 ) . However , it has not been investigated to what extent the gut microbiota could affect variation in key parameters such as suggested by Ding et al . ( 2010 ) . We therefore investigated how much the parameters of T2DM and inflammation in non - treated Lep ob / Lep ob mice correlated to the composition of the gut microbiota described by Krych et al . ( 2013 ) ."
    [Show abstract] [Hide abstract]
    ABSTRACT: Gut microbiota have been implicated as a relevant factor in the development of type 2 diabetes mellitus (T2DM), and its diversity might be a cause of variation in animal models of T2DM. In this study, we aimed to characterise the gut microbiota of a T2DM mouse model with a long term vision of being able to target the gut microbiota to reduce the number of animals used in experiments. Male B6.V-Lepob/J mice were characterized according to a number of characteristics related to T2DM, inflammation and gut microbiota. All findings were thereafter correlated to one another in a linear regression model. The total gut microbiota profile correlated to glycated haemoglobin, and high proportions of Prevotellaceae and Lachnospiraceae correlated to impaired or improved glucose intolerance, respectively. In addition, Akkermansia muciniphila disappeared with age as glucose intolerance worsened. A high proportion of regulatory T cells correlated to the gut microbiota and improved glucose tolerance. Furthermore, high levels of IL-10, IL-12 and TNF-α correlated to impaired glucose tolerance, blood glucose or glycated haemoglobin. The findings indicate that gut microbiota may contribute to variation in various disease read-outs in the B6.V-Lepob/J model and considering them in both quality assurance and data evaluation for the B6.V-Lepob/J model may have a reducing impact on the inter-individual variation.
    Research in Veterinary Science 04/2014; 96(2). DOI:10.1016/j.rvsc.2014.01.007 · 1.51 Impact Factor
  • Source
    • "Thus, more potent antimicrobials have been examined to control resistant bacteria (Yoon et al., 2013a). Although Ding et al. (2010) showed that fat in food plays an important role in bacterial pathogenicity; the thermal resistance of L. monocytogenes was not influenced by fat during the heat experiment in our study, which simulated the minimal heat treatment that these meat products generally receive before consumption. "
    [Show abstract] [Hide abstract]
    ABSTRACT: This study evaluated the effects of frankfurter fat content on Listeria monocytogenes resistance to heat stress and gastric fluid, and the Caco-2 cell invasion efficiency of the pathogen. A 10-strain mixture of L. monocytogenes was inoculated on frankfurters formulated with 10%, 20%, and 30% fat content (10%: F10, 20%: F20, 30%: F30) and stored at for 30 d. The samples were analyzed for L. monocytogenes resistance to heat stress and a simulated gastric fluid challenge. The total bacteria and L. monocytogenes survival rates were measured on tryptic soy agar plus 0.6% yeast extract and Palcam agar, respectively. L. monocytogenes colonies inoculated on F10, F20, and F30 samples were used for a Caco-2 cell invasion assay. In general, no obvious differences were observed between the survival rates of total bacteria and L. monocytogenes grown on different fat contents under heat stress and gastric fluid challenge. However, L. monocytogenes obtained from the F30 samples had a significantly higher Caco-2 cell invasion efficiency than those in the F10 and F20 samples (p
    Hangug chugsan sigpum haghoeji = Korean journal for food science of animal resources 02/2014; 34(1). DOI:10.5851/kosfa.2014.34.1.20 · 0.25 Impact Factor
  • Source
    • "and insulin resistance induced by a high-fat diet (Backhed et al., 2007; Ding et al., 2010; Rabot et al., 2010). A recent report showed that the gut microbiota is able to stimulate brown adipose tissue lipid metabolism (Mestdagh et al., 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue 7and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and activity are discussed in the context of obesity and type 2 diabetes.
    Beneficial Microbes 07/2013; 5(1):1-15. DOI:10.3920/BM2012.0065 · 1.50 Impact Factor
Show more