Article

Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth.

Department of Pediatrics, Child & Family Research Institute, University of British Columbia, Vancouver, Canada.
PLoS ONE (Impact Factor: 3.53). 08/2010; 5(8):e12201. DOI: 10.1371/journal.pone.0012201
Source: PubMed

ABSTRACT Prenatal and early postnatal exposure to maternal depression may "program" childhood behavior via epigenetic processes such as DNA methylation. Methylenetetrahydro-folate reductase (MTHFR) is an important enzyme in the generation of methyl groups for DNA methylation. The common MTHFR C677T variant is associated with depression in men and non-pregnant women, and with global changes in DNA methylation. This study investigated the effect of maternal MTHFR C677T genotype on antenatal maternal mood, and their impact on the gene-specific methylation in pregnant women and their newborn infants. The methylation status of SLC6A4, which encodes the transmembrane serotonin transporter, and BDNF, which encodes brain derived neurotrophic factor, were assessed because of their potential role in behaviour.
Depressed mood was assessed by the Edinburgh Postnatal Depression Scale (EPDS) and the Hamilton Rating Scale for Depression (HAM-D) in women (n = 82, all taking folate) during the 2(nd) and 3(rd) trimesters of pregnancy. The methylation status of SLC6A4 and BDNF were assessed in 3rd trimester maternal peripheral leukocytes and in umbilical cord leukocytes collected from their infants at birth. Women with the MTHFR 677TT genotype had greater 2(nd) trimester depressed mood (p<0.05). Increased 2(nd) trimester maternal depressed mood (EPDS scores) was associated with decreased maternal and infant SLC6A4 promoter methylation (p<0.05), but had no effect on BDNF promoter methylation.
These findings show that the MTHFR C677T variant is associated with greater depressed mood during pregnancy. We further showed that prenatal exposure to maternal depressed mood affects gene-specific DNA methylation patterns. These findings support the concept that alterations in epigenetic processes may contribute to developmental programming of behaviour by maternal depression.

0 Bookmarks
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early life environments interact with genotype to determine stable phenotypic outcomes. Here we examined the influence of a variant in the brain-derived neurotropic factor (BDNF) gene (Val66Met), which underlies synaptic plasticity throughout the central nervous system, on the degree to which antenatal maternal anxiety associated with neonatal DNA methylation. We also examined the association between neonatal DNA methylation and brain substructure volume, as a function of BDNF genotype. Infant, but not maternal, BDNF genotype dramatically influences the association of antenatal anxiety on the epigenome at birth as well as that between the epigenome and neonatal brain structure. There was a greater impact of antenatal maternal anxiety on the DNA methylation of infants with the methionine (Met)/Met compared to both Met/valine (Val) and Val/Val genotypes. There were significantly more cytosine-phosphate-guanine sites where methylation levels covaried with right amygdala volume among Met/Met compared with both Met/Val and Val/Val carriers. In contrast, more cytosine-phosphate-guanine sites covaried with left hippocampus volume in Val/Val infants compared with infants of the Met/Val or Met/Met genotype. Thus, antenatal Maternal Anxiety × BDNF Val66Met Polymorphism interactions at the level of the epigenome are reflected differently in the structure of the amygdala and the hippocampus. These findings suggest that BDNF genotype regulates the sensitivity of the methylome to early environment and that differential susceptibility to specific environmental conditions may be both tissue and function specific.
    Development and Psychopathology 02/2015; 27(1):137-50. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Psychiatric disorders are complex multifactorial disorders involving chronic alterations in neural circuit structure and function. While genetic factors play a role in the etiology of disorders such as depression, addiction, and schizophrenia, relatively high rates of discordance among identical twins clearly point to the importance of additional factors. Environmental factors, such as stress, play a major role in the psychiatric disorders by inducing stable changes in gene expression, neural circuit function, and ultimately behavior. Insults at the developmental stage and in adulthood appear to induce distinct maladaptations. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and associated aberrant epigenetic regulation is a unifying theme in psychiatric disorders. Aspects of depression can be modeled in animals by inducing disease-like states through environmental manipulations, and these studies can provide a more general understanding of epigenetic mechanisms in psychiatric disorders. Understanding how environmental factors recruit the epigenetic machinery in animal models is providing new insights into disease mechanisms in humans.
    Dialogues in clinical neuroscience 09/2014; 16(3):281-95.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Prenatal maternal stress (PNMS) predicts a wide variety of behavioral and physical outcomes in the offspring. Although epigenetic processes may be responsible for PNMS effects, human research is hampered by the lack of experimental methods that parallel controlled animal studies. Disasters, however, provide natural experiments that can provide models of prenatal stress.
    PLoS ONE 09/2014; 9(9):e107653. · 3.53 Impact Factor

Preview (2 Sources)

Download
2 Downloads
Available from