Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13.

University of Minnesota Masonic Cancer Center, Minneapolis, MN, USA.
Blood (Impact Factor: 9.78). 12/2010; 116(25):5738-47. DOI: 10.1182/blood-2010-06-287839
Source: PubMed

ABSTRACT Myeloid-derived suppressor cells (MDSCs) are a well-defined population of cells that accumulate in the tissue of tumor-bearing animals and are known to inhibit immune responses. Within 4 days, bone marrow cells cultured in granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor resulted in the generation of CD11b(+)Ly6G(lo)Ly6C(+) MDSCs, the majority of which are interleukin-4Rα (IL-4Rα(+)) and F4/80(+). Such MDSCs potently inhibited in vitro allogeneic T-cell responses. Suppression was dependent on L-arginine depletion by arginase-1 activity. Exogenous IL-13 produced an MDSC subset (MDSC-IL-13) that was more potently suppressive and resulted in arginase-1 up-regulation. Suppression was reversed with an arginase inhibitor or on the addition of excess L-arginine to the culture. Although both MDSCs and MDSC-IL-13 inhibited graft-versus-host disease (GVHD) lethality, MDSC-IL-13 were more effective. MDSC-IL-13 migrated to sites of allopriming. GVHD inhibition was associated with limited donor T-cell proliferation, activation, and proinflammatory cytokine production. GVHD inhibition was reduced when arginase-1-deficient MDSC-IL-13 were used. MDSC-IL-13 did not reduce the graft-versus-leukemia effect of donor T cells. In vivo administration of a pegylated form of human arginase-1 (PEG-arg1) resulted in L-arginine depletion and significant GVHD reduction. MDSC-IL-13 and pegylated form of human arginase-1 represent novel strategies to prevent GVHD that can be clinically translated.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have recently reported that interferon gamma receptor deficient (IFNγR-/-) allogeneic donor T cells result in significantly less graft-versus-host disease (GvHD) than wild-type (WT) T cells, while maintaining an anti-leukemia or graft-versus-leukemia (GvL) effect after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We demonstrated that IFNγR signaling regulates alloreactive T cell trafficking to GvHD target organs through expression of the chemokine receptor CXCR3 in alloreactive T cells. Since IFNγR signaling is mediated via JAK1/JAK2, we tested the effect of JAK1/JAK2 inhibition on GvHD. While we demonstrated that pharmacologic blockade of JAK1/JAK2 in WT T cells using the JAK1/JAK2 inhibitor, INCB018424 (Ruxolitinib), resulted in a similar effect to IFNγR-/- T cells both in vitro (reduction of CXCR3 expression in T cells) and in vivo (mitigation of GvHD after allo-HSCT), it remains to be determined if in vivo administration of INCB018424 will result in preservation of GvL while reducing GvHD. Here, we report that INCB018424 reduces GvHD and preserves the beneficial GvL effect in two different murine MHC-mismatched allo-HSCT models and using two different murine leukemia models (lymphoid leukemia and myeloid leukemia). In addition, prolonged administration of INCB018424 further improves survival after allo-HSCT and is superior to other JAK1/JAK2 inhibitors, such as TG101348 or AZD1480. These data suggest that pharmacologic inhibition of JAK1/JAK2 might be a promising therapeutic approach to achieve the beneficial anti-leukemia effect and overcome HLA-barriers in allo-HSCT. It might also be exploited in other diseases besides GvHD, such as organ transplant rejection, chronic inflammatory diseases and autoimmune diseases.
    PLoS ONE 10/2014; 9(10):e109799. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) are innate immune cells capable of suppressing T-cell responses. We previously reported the presence of MDSCs with a granulocytic phenotype in the synovial fluid (SF) of mice with proteoglycan (PG)-induced arthritis (PGIA), a T cell-dependent autoimmune model of rheumatoid arthritis (RA). However, the limited amount of SF-MDSCs precluded investigations into their therapeutic potential. The goals of this study were to develop an in vitro method for generating MDSCs similar to those found in SF and to reveal the therapeutic effect of such cells in PGIA.
    PLoS ONE 11/2014; 9(11):e111815. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) exhibit potent immunosuppressive activities in cancer. MDSCs infiltrate tumors and strongly inhibit cancer-specific cytotoxic T cells. Their mechanism of differentiation and identification of MDSC-specific therapeutic targets are major areas of interest. We have devised a highly efficient and rapid method to produce very large numbers of melanoma-infiltrating MDSCs ex vivo without inducing tumors in mice. These MDSCs were used to study their differentiation, immunosuppressive activities and were compared to non-neoplastic counterparts and conventional dendritic cells using unbiased systems biology approaches. Differentially activated/deactivated pathways caused by cell type differences and by the melanoma tumor environment were identified. MDSCs increased the expression of trafficking receptors to sites of inflammation, endocytosis, changed lipid metabolism, and up-regulated detoxification pathways such as the expression of P450 reductase. These studies uncovered more than 60 potential novel therapeutic targets. As a proof of principle, we demonstrate that P450 reductase is the target of pro-drugs such as Paclitaxel, which depletes MDSCs following chemotherapy in animal models of melanoma and in human patients. Conversely, P450 reductase protects MDSCs against the cytotoxic actions of other chemotherapy drugs such as Irinotecan, which is ineffective for the treatment of melanoma.
    Oncotarget 08/2014; 1. · 6.63 Impact Factor


Available from
May 29, 2014