Comparative Assessment of Life Cycle Assessment Methods Used for Personal Computers

Intel Corporation, 2200 Mission College Boulevard, Santa Clara, California 95054, USA.
Environmental Science & Technology (Impact Factor: 5.48). 10/2010; 44(19):7335-46. DOI: 10.1021/es903297k
Source: PubMed

ABSTRACT This article begins with a summary of findings from commonly cited life cycle assessments (LCA) of Information and Communication Technology (ICT) products. While differing conclusions regarding environmental impact are expected across product segments (mobile phones, personal computers, servers, etc.) significant variation and conflicting conclusions are observed even within product segments such as the desktop Personal Computer (PC). This lack of consistent conclusions and accurate data limits the effectiveness of LCA to influence policy and product design decisions. From 1997 to 2010, the majority of published studies focused on the PC concluded that the use phase contributes most to the life cycle energy demand of PC products with a handful of studies suggesting that manufacturing phase of the PC has the largest impact. The purpose of this article is to critically review these studies in order to analyze sources of uncertainty, including factors that extend beyond data quality to the models and assumptions used. These findings suggest existing methods to combine process-based LCA data with product price data and remaining value adjustments are not reliable in conducting life cycle assessments for PC products. Recommendations are provided to assist future LCA work.

  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes the life cycle engineering of an integrated desktop computer system from the perspective of a small to medium enterprise (SME). Using a novel approach which considers the motivations of actors at various stages during the life cycle of the PC it attempts to engineer the lifecycle through design features which have been chosen to influence these critical decision points leading to more desirable pathways from an environmental perspective. Using these motivations it extracts design principles and ultimately design and service features to (1) promote long lifetime with the original user (2) facilitate refurbishment and reuse (3) be easy to disassemble and (4) contain minimal valueless fractions at end of life. This has been achieved largely through two specific design features and supported by post-sale services to the consumer. The first of these features is a high quality finish using a solid hardwood chassis to create an emotionally durable product that is easy to refurbish and eliminates negative value plastic fractions at end of life. The second feature is a strong focus on ease of disassembly to facilitate upgrade, refurbishment and deep disassembly at end of life. The service offering is also crucial and upgrade services and buy back are available.
    Journal of Cleaner Production 07/2014; 74. DOI:10.1016/j.jclepro.2014.03.042 · 3.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Until recently, the main environmental concerns associated with information and communication technologies (ICTs) have been their use-phase electricity consumption and the chemicals associated with their manufacture, and the environmental effects of these technologies on other parts of the economy have largely been ignored. With the advent of mobile computing, communication, and sensing devices, these indirect effects have the potential to be much more important than the impacts from the use and manufacturing phases of this equipment. This article summarizes the trends that have propelled modern technological societies into the ultralow-power design space and explores the implications of these trends for the direct and indirect environmental impacts associated with these new technologies. It reviews the literature on environmental effects of information technology (also with an emphasis on low-power systems) and suggests areas for further research.
    Annual Review of Environment and Resources 10/2013; 38(1):311. DOI:10.1146/annurev-environ-021512-110549 · 5.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The possibilities for full life cycle assessment (LCA) of new Information and Communication Technology (ICT) products are often limited, so simplification approaches are needed. The aim of this paper is to investigate possible simplifications in LCA of a mobile phone and to use the results to discuss the possibilities of LCA simplifications for ICT products in a broader sense. Another aim is to identify processes and data that are sensitive to different methodological choices and assumptions related to the environmental impacts of a mobile phone. Methods Different approaches to a reference LCA of a mobile phone was tested: (1) excluding environmental impact categories, (2) excluding life cycle stages/processes, (3) using secondary process data from generic databases, (4) using input-output data and (5) using a simple linear relationship between mass and embodied emissions. Results and discussion It was not possible to identify one or a few impact categories representative of all others. If several impact categories would be excluded, information would be lost. A precautionary approach of not excluding impact categories is therefore recommended since impacts from the different life cycle stages vary between impact categories. Regarding use of secondary data for an ICT product similar to that studied here, we recommend prioritising collection of primary (specific) data on energy use during production and use, key component data (primarily integrated circuits) and process-specific data regarding raw material acquisition of specific metals (e.g. gold) and air transport. If secondary data are used for important processes, the scaling is crucial. The use of input-output data can be a considerable simplification and is probably best used to avoid data gaps when more specific data are lacking. Conclusions Further studies are needed to provide for simplified LCAs for ICT products. In particular, the end-of-life treatment stage need to be further addressed, as it could not be investigated here for all simplifications due to data gaps.
    The International Journal of Life Cycle Assessment 05/2014; 19(5):979-993. DOI:10.1007/s11367-014-0721-6 · 3.09 Impact Factor