Diagnostic Radiation Exposure in Pediatric Trauma Patients

Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA.
The Journal of trauma (Impact Factor: 2.96). 02/2011; 70(2):E24-8. DOI: 10.1097/TA.0b013e3181e80d8d
Source: PubMed


The amount of imaging studies performed for disease diagnosis has been rapidly increasing. We examined the amount of radiation exposure that pediatric trauma patients receive because they are an at-risk population. Our hypothesis was that pediatric trauma patients are exposed to high levels of radiation during a single hospital visit.
Retrospective review of children who presented to Johns Hopkins Pediatric Trauma Center from July 1, 2004, to June 30, 2005. Radiographic studies were recorded for each patient and doses were calculated to give a total effective dose of radiation. All radiographic studies that each child received during evaluation, including any associated hospital admission, were included.
A total of 945 children were evaluated during the study year. A total of 719 children were included in the analysis. Mean age was 7.8 (±4.6) years. Four thousand six hundred three radiographic studies were performed; 1,457 were computed tomography (CT) studies (31.7%). Average radiation dose was 12.8 (±12) mSv. We found that while CT accounted for only 31.7% of the radiologic studies performed, it accounted for 91% of the total radiation dose. Mean dose for admitted children was 17.9 (±13.8) mSv. Mean dose for discharged children was 8.4 (±7.8) mSv (p<0.0001). Burn injuries had the lowest radiation dose [1.2 (±2.6) mSv], whereas motor vehicle collision victims had the highest dose [18.8 (±14.7) mSv].
When the use of radiologic imaging is considered essential, cumulative radiation exposure can be high. In young children with relatively long life spans, the benefit of each imaging study and the cumulative radiation dose should be weighed against the long-term risks of increased exposure.

20 Reads
  • Source
    • "A previous study reported that there were differences in cED depending on trauma mechanism[15]. In that study, patients with traffic accident related injuries (motor vehicle collision, bicycle, pedestrian collision) and with fall down injuries showed higher cED than that of other patients, which was comparable with our result. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to patients with underlying cancer or chronic disease, injury patients are relatively young, and can be expected to live their natural lifespan if injuries are appropriately treated. Multiple and repeated diagnostic scans might be performed in these patients during admission. Nevertheless, radiation exposure in injury patients has been overlooked and underestimated because of the emergent nature of such situations. Therefore, we tried to assess the cumulative effective dose (cED) of injury patients in the emergency department. We included patients who visited the emergency department (ED) of a single tertiary hospital due to injury between February 2010 and February 2011. The cED for each patient was calculated and compared across age, sex and injury mechanism. A total of 11,676 visits (mean age: 28.0 years, M:F = 6,677:4,999) were identified. Although CT consisted of only 7.8% of total radiologic examinations (n=78,025), it accounted for 87.1% of the total cED. The mean cED per visit was 2.6 mSv. A significant difference in the cED among injury mechanisms was seen (p<0.001) and patients with traffic accidents and fall down injuries showed relatively high cED values. Hence, to reduce the cED of injury patients, an age-, sex- and injury mechanism-specific dose reduction strategy should be considered.
    PLoS ONE 12/2013; 8(12):e84870. DOI:10.1371/journal.pone.0084870 · 3.23 Impact Factor
  • Source
    • "First, we only considered radiation from CT. As mentioned previously, CT has been reported to contribute over 90% of the effective dose due to imaging in paediatric trauma patients [17] [18] [21], so our focus on CT is appropriate. Second, since our study did not capture CT scans performed outside our centre, the cumulative dose of radiation that these children were exposed to may be even higher than that reported here. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine the effective dose of radiation due to computed tomography (CT) scans in paediatric trauma patients at a level 1 Canadian paediatric trauma centre. We also explored the indications and actions taken as a result of these scans. We performed a retrospective review of paediatric trauma patients presenting to our centre from January 1, 2007 to December 31, 2008. All CT scans performed during the initial trauma resuscitation, hospital stay, and 6 months afterwards were included. Effective dose was calculated using the reported dose length product for each scan and conversion factors specific for body region and age of the patient. 157 paediatric trauma patients were identified during the 2-year study period. Mean Injury Severity Score was 22.5 (range 12-75). 133 patients received at least one CT scan. The mean number of scans per patient was 2.6 (range 0-16). Most scans resulted in no further action (56%) or additional imaging (32%). A decision to perform a procedure (2%), surgery (8%), or withdrawal of life support (2%) was less common. The average dose per patient was 13.5mSv, which is 4.5 times the background radiation compared to the general population. CT head was the most commonly performed type of scan and was most likely to be repeated. CT body, defined as a scan of the chest, abdomen, and/or pelvis, was associated with the highest effective dose. CT is a significant source of radiation in paediatric trauma patients. Clinicians should carefully consider the indications for each scan, especially when performing non-resuscitation scans. There is a need for evidence-based treatment algorithms to assist clinicians in selecting appropriate imaging for patients with severe multisystem trauma.
    Injury 07/2013; 45(1). DOI:10.1016/j.injury.2013.06.009 · 2.14 Impact Factor

Show more