Article

COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function.

Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands.
BMC Cancer (Impact Factor: 3.33). 01/2010; 10:464. DOI: 10.1186/1471-2407-10-464
Source: PubMed

ABSTRACT Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies.
MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2) inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy.
We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy.
We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity.

0 Bookmarks
 · 
121 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population and show significant expansion at pathological conditions. microRNA play important roles in many biological processes, whether microRNAs has a function in the expansion of MDSCs is still not very clear. In this study, miR-34a overexpression can induce the expansion of MDSCs in bone marrow chimera and transgenic mice model. The experimental results suggest that miR-34a inhibited the apoptosis of MDSCs but did not affect the proliferation of MDSCs. The distinct mRNA microarray profiles of MDSCs of wild type and miR-34a over-expressing MDSCs combined with the target prediction of miR-34a suggest that miR-34a may target genes such as p2rx7, Tia1, and plekhf1 to inhibit the apoptosis of MDSCs. Taken together, miR-34a contributes to the expansion of MDSCs by inhibiting the apoptosis of MDSCs.
    Experimental Cell Research 04/2014; · 3.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumour-induced immune dysfunction is a serious challenge to immunotherapy for cancer, and intact adaptive and innate cellular immunity are key to its success. Myelomonocytic cells have a central role in this immune suppression, and tumour-associated macrophages, eosinophils, neutrophils and myeloid-derived suppressor cells have all been shown to be of major importance. These myelomonocytic cells secrete a broad repertoire of inflammatory mediators providing them with powerful tools to inhibit tumour reactive T cells and natural killer cells; free oxygen radicals including reactive oxygen species and NO, arginase, indoleamine 2,3-dioxygenase, prostaglandins, the pro-inflammatory heterodimer S100A8/9 and cytokines, such as granulocyte–macrophage colony-stimulating factor and transforming growth factor-β, have proven particularly potent in suppressing anti-tumour cellular immunity. Determining which of these factors prevail in individual cancer patients and designing methods aimed at neutralization or inhibition of their effects on target tissues have the potential to greatly enhance the clinical efficacy of immunotherapy. This article is protected by copyright. All rights reserved.
    Journal of Internal Medicine 03/2014; · 6.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Malignant gliomas are heavily infiltrated by immature myeloid cells that mediate immunosuppression. Agonistic CD40 monoclonal antibody (mAb) has been shown to activate myeloid cells and promote antitumor immunity. Our previous study has also demonstrated blockade of cyclooxygenase-2 (COX-2) reduces immunosuppressive myeloid cells, thereby suppressing glioma development in mice. We therefore hypothesized that a combinatory strategy to modulate myeloid cells via two distinct pathways, i.e., CD40/CD40L stimulation and COX-2 blockade, would enhance anti-glioma immunity. We used three different mouse glioma models to evaluate therapeutic effects and underlying mechanisms of a combination regimen with an agonist CD40 mAb and the COX-2 inhibitor celecoxib. Treatment of glioma-bearing mice with the combination therapy significantly prolonged survival compared with either anti-CD40 mAb or celecoxib alone. The combination regimen promoted maturation of CD11b(+) cells in both spleen and brain, and enhanced Cxcl10 while suppressing Arg1 in CD11b(+)Gr-1(+) cells in the brain. Anti-glioma activity of the combination regimen was T-cell dependent because depletion of CD4(+) and CD8(+) cells in vivo abrogated the anti-glioma effects. Furthermore, the combination therapy significantly increased the frequency of CD8(+) T-cells, enhanced IFN-γ-production and reduced CD4(+)CD25(+)Foxp3(+) T regulatory cells in the brain, and induced tumor-antigen-specific T-cell responses in lymph nodes. Our findings suggest that the combination therapy of anti-CD40 mAb with celecoxib enhances anti-glioma activities via promotion of type-1 immunity both in myeloid cells and T-cells.
    Cancer immunology, immunotherapy : CII. 05/2014;

Full-text (3 Sources)

View
17 Downloads
Available from
Jun 3, 2014