Article

COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function

Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands.
BMC Cancer (Impact Factor: 3.32). 08/2010; 10:464. DOI: 10.1186/1471-2407-10-464
Source: PubMed

ABSTRACT Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature cells that accumulates in tumour-bearing hosts. These cells are induced by tumour-derived factors (e.g. prostaglandins) and have a critical role in immune suppression. MDSC suppress T and NK cell function via increased expression of arginase I and production of reactive oxygen species (ROS) and nitric oxide (NO). Immune suppression by MDSC was found to be one of the main factors for immunotherapy insufficiency. Here we investigate if the in vivo immunoregulatory function of MDSC can be reversed by inhibiting prostaglandin synthesis by specific COX-2 inhibition focussing on ROS production by MDSC subtypes. In addition, we determined if dietary celecoxib treatment leads to refinement of immunotherapeutic strategies.
MDSC numbers and function were analysed during tumour progression in a murine model for mesothelioma. Mice were inoculated with mesothelioma tumour cells and treated with cyclooxygenase-2 (COX-2) inhibitor celecoxib, either as single agent or in combination with dendritic cell-based immunotherapy.
We found that large numbers of infiltrating MDSC co-localise with COX-2 expression in those areas where tumour growth takes place. Celecoxib reduced prostaglandin E2 levels in vitro and in vivo. Treatment of tumour-bearing mice with dietary celecoxib prevented the local and systemic expansion of all MDSC subtypes. The function of MDSC was impaired as was noticed by reduced levels of ROS and NO and reversal of T cell tolerance; resulting in refinement of immunotherapy.
We conclude that celecoxib is a powerful tool to improve dendritic cell-based immunotherapy and is associated with a reduction in the numbers and suppressive function of MDSC. These data suggest that immunotherapy approaches benefit from simultaneously blocking cyclooxygenase-2 activity.

0 Followers
 · 
159 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and activation, function and turnover, these methods can be divided into: (I) prevention or differentiation to mature cells, (II) blockade of MDSC expansion and activation, (III) inhibition of MDSC suppressive activity or (IV) depletion of intratumoral MDSCs. This review describes effective mono- or multimodal-therapies that target MDSCs for the benefit of cancer treatment.
    OncoImmunology 01/2015; 4(1):e954829. DOI:10.4161/21624011.2014.954829 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Despite huge economic and intellectual investments, developing effective cancer treatments continues to be an overarching challenge. Engineered oncolytic viruses (OVs) present self-amplifying immunotherapy platforms capable of preferential cytotoxicity to cancer cells and simultaneous activation of host anti-tumor immunity. In preclinical studies, OVs are showing potent therapeutic effects when used in combination with other immune therapy strategies. In the clinic, the immunotherapeutic effects of OVs are showing promising results. Here we review current strategies for engineering OVs, and present a perspective of future directions within a discussion of the current outcomes of combinatorial approaches with other cancer immunotherapy platforms.
    Future Oncology 02/2015; 11(4):675-689. DOI:10.2217/fon.14.254 · 2.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A very recent finding is the role of immune activation in cancer. The assumption that stimulating the patient's immune system to attack tumors is a valuable treatment option in malignant diseases has gained more acceptance. However the high immunosuppressive effects caused by the tumor limits this beneficial effect. There is a delicate balance between immunoactivation and immunosuppression in a patient. Especially in non small cell lung cancer (NSCLC), the role of immunosuppressive cells hampering immune activation is high. But also in small cell lung cancer (SCLC) and mesothelioma immunosuppressive activity is high. This is suggested to be related to the type of tumor, advanced stage of the disease, and the tumor load. In this review, we provide an overview of the progress and challenges in the immunotherapeutic approaches in lung cancer. We conclude with the concept that immunotherapy in thoracic malignancies must be tailored made to the balance of the immune system.
    02/2014; 3(1):34-45. DOI:10.3978/j.issn.2218-6751.2013.11.04