Article

Spinning in the Scanner: Neural Correlates of Virtual Reorientation

Department of Psychology, Brescia University College, 1285 Western Road, London, Ontario, Canada.
Journal of Experimental Psychology Learning Memory and Cognition (Impact Factor: 3.1). 09/2010; 36(5):1097-107. DOI: 10.1037/a0019938
Source: PubMed

ABSTRACT Recent studies have used spatial reorientation task paradigms to identify underlying cognitive mechanisms of navigation in children, adults, and a range of animal species. Despite broad interest in this task across disciplines, little is known about the brain bases of reorientation. We used functional magnetic resonance imaging to examine neural activity in adults during a virtual reality version of the reorientation task. Three environments that varied in the cues provided were studied: a rectangular room with 4 identical gray walls (Geometry), a square room with 3 gray walls and 1 red wall (Feature), and a rectangular room with 3 gray walls and 1 red wall (Feature + Geometry). Multiple areas within the medial temporal lobe (MTL) showed increased activation when a feature was present compared with when reorientation was based only on geometric cues. In contrast, reliance on geometric cues significantly activated a number of non-MTL structures, including the prefrontal cortex and inferior temporal gyrus. These results provide neural evidence for processing differences between the 2 types of cue as well as insight into developmental and comparative aspects of reorientation.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the holy grails of cognitive science is to understand the causal chain that links genes and cognition. Genetic syndromes accompanied by cognitive effects offer natural experiments that can uniquely inform our understanding of this chain. In this article, we discuss the case of Williams syndrome (WS), which is characterized by a set of missing genes on chromosome 7q11.23, and presents with a unique cognitive profile that includes severe spatial impairment along with strikingly fluent and well-structured language. An early inference from this profile was the idea that a small group of genes could directly target one cognitive system while leaving others unaffected. Recent evidence shows that this inference fails. First, the profile within the spatial domain is varied, with relative strength in some aspects of spatial representation but severe impairment in others. Second, some aspects of language may fail to develop fully, raising the question of how to compare the resilience and fragility of the two key cognitive domains in this syndrome. Third, much research on the profile fails to place findings in the context of typical developmental trajectories. We explore these points and propose a new hypothesis that explains the unusual WS cognitive profile by considering normal mechanisms of cognitive development that undergo change on an extremely prolonged timetable. This hypothesis places the elements of the WS cognitive profile in a new light, refocuses the discussion of the gene-cognition causal chain for WS and other disorders, and more generally, underlines the importance of understanding cognitive structure in both typical and atypical development.
    Wiley interdisciplinary reviews. Cognitive science 09/2013; 4(6):693-706. DOI:10.1002/wcs.1258 · 0.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The hippocampus has long been known to play a role in allocentric spatial coding, but its specific involvement in reorientation, or the recalibration of a disrupted egocentric spatial representation using allocentric spatial information, has received less attention. Initially, the cognitive literature on reorientation focused on a "geometric module" sensitive to the shape formed by extended surfaces in the environment, and the neuroscience literature followed with proposals that particular MTL regions might be the seat of such a module. However, with behavioral evidence mounting that a modular cognitive architecture is unlikely, recent work has begun to directly address the issue of the neural underpinnings of reorientation. In this review, we describe the reorientation paradigm, initial proposals for the role of the MTL when people reorient, our recent work on the neural bases of reorientation, and finally, how this new information regarding neural mechanism helps to re-interpret and clarify the original behavioral reorientation data.
    Frontiers in Human Neuroscience 08/2014; 8:596. DOI:10.3389/fnhum.2014.00596 · 2.90 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spatial cognition plays an essential role in everyday functioning and provides a foundation for successful performance in scientific and technological fields. Reasoning about space involves processing information about distance, angles, and direction. Starting from infancy, children display sensitivity to these spatial properties, although their initial skills are quite limited. Subsequent development during early childhood and through the elementary school years involves gradual improvement in the use of individual frames of reference (i.e., egocentric and allocentric), as well as in the ability to flexibly combine different types of spatial information. Similarly, there is a relatively long progression from the starting points, when infants and young children display sensitivity to distance and form simple spatial categories, to more mature spatial competence when older children and adults integrate distance and categorical information hierarchically. Such developments are associated with both the maturation of specific brain regions and accumulating experience, including interactions with the physical world and the acquisition of cultural tools. In particular, the mastery of symbolic spatial representations, such as maps and models, significantly augments basic spatial capabilities. While growing evidence implicates both biological and experiential factors in the development of spatial cognition, a deeper understanding of the mechanisms that underlie the developmental process requires further investigation of how such factors interact to produce organisms that function competently in their environments. WIREs Cogn Sci 2012, 3:349–362. doi: 10.1002/wcs.1171For further resources related to this article, please visit the WIREs website.
    Wiley interdisciplinary reviews. Cognitive science 05/2012; DOI:10.1002/wcs.1171 · 0.79 Impact Factor

Full-text (2 Sources)

Download
68 Downloads
Available from
May 30, 2014