Developing new SSR markers from ESTs of pea (Pisum sativum L.).

Institute of Vegetables, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
Journal of Zhejiang University SCIENCE B (Impact Factor: 1.29). 09/2010; 11(9):702-7. DOI: 10.1631/jzus.B1000004
Source: PubMed

ABSTRACT The development of expressed sequence tags (ESTs) from pea has provided a useful source for mining novel simple sequence repeat (SSR) markers. In the present research, in order to find EST-derived SSR markers, 18 552 pea ESTs from the National Center for Biotechnology Information (NCBI) database were downloaded and assembled into 10 086 unigenes. A total of 586 microsatellites in 530 unigenes were identified, indicating that merely 5.25% of sequences contained SSRs. The most abundant SSRs within pea were tri-nucleotide repeat motifs, and among all the tri-nucleotide repeats, the motif GAA was the most abundant type. In total, 49 SSRs were used for primer design. EST-SSR loci were subsequently screened on 10 widely adapted varieties in China. Of these, nine loci showed polymorphic profiles that revealed two to three alleles per locus. The polymorphism information content value ranged from 0.18 to 0.58 with an average of 0.41. Furthermore, transferable analysis revealed that some of these loci showed transferability to faba bean. Because of their polymorphism and transferability, these nine novel EST-SSRs will be valuable tools for marker-assisted breeding and comparative mapping of pea in the future.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: With 1 figure and 3 tables AbstractSimple sequence repeats (SSRs) derived from expressed sequence tags (ESTs) are important resources for gene discovery and mapping. In this study, we developed EST‐based SSR (eSSRs) markers and assessed their ability in mapping and transferability. A total of 10 800 unigenes were detected from 18 522 pea EST sequences (December 2009). Screening of 10 800 unigenes by MISA (MIcroSAtellite) revealed 2612 (14.1%) eSSRs in 2395 (12.9%) SSR‐containing ESTs from which 577 (24.1%) primer pairs were designed. The most abundant repeat motif identified in eSSR was mononucleotide (85.2%), followed by trinucleotide (10.6%) and dinucleotide (2.8%). Among 108 randomly selected primer pairs, 40 were assessed for mapping and 68 to test cross‐species transferability in six leguminous species. Out of 40 primer pairs, 85% produced amplicons, 60% showed polymorphism and 47.5% were mapped. Furthermore, 68 primer pairs revealed high rate of transferability (48–85%) in leguminous species. High levels of polymorphism, reproducibility, presence of alleles (3.8/locus) and transferability revealed the potential use of these eSSR markers in molecular mapping, quantitative trait loci (QTL) analysis and comparative mapping in pea and other legumes.
    Plant Breeding 02/2012; 131(1). DOI:10.1111/j.1439-0523.2011.01926.x · 1.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Key message Gene-based SNPs were identified and mapped in pea using five recombinant inbred line populations segregating for traits of agronomic importance. Abstract Pea (Pisum sativum L.) is one of the world’s oldest domesticated crops and has been a model system in plant biology and genetics since the work of Gregor Mendel. Pea is the second most widely grown pulse crop in the world following common bean. The importance of pea as a food crop is growing due to its combination of moderate protein concentration, slowly digestible starch, high dietary fiber concentration, and its richness in micronutrients; however, pea has lagged behind other major crops in harnessing recent advances in molecular biology, genomics and bioinformatics, partly due to its large genome size with a large proportion of repetitive sequence, and to the relatively limited investment in research in this crop globally. The objective of this research was the development of a genome-wide transcriptome-based pea single-nucleotide polymorphism (SNP) marker platform using next-generation sequencing technology. A total of 1,536 polymorphic SNP loci selected from over 20,000 non-redundant SNPs identified using deep transcriptome sequencing of eight diverse Pisum accessions were used for genotyping in five RIL populations using an Illumina GoldenGate assay. The first high-density pea SNP map defining all seven linkage groups was generated by integrating with previously published anchor markers. Syntenic relationships of this map with the model legume Medicago truncatula and lentil (Lens culinaris Medik.) maps were established. The genic SNP map establishes a foundation for future molecular breeding efforts by enabling both the identification and tracking of introgression of genomic regions harbouring QTLs related to agronomic and seed quality traits. Electronic supplementary material The online version of this article (doi:10.1007/s00122-014-2375-y) contains supplementary material, which is available to authorized users.
    Theoretical and Applied Genetics 08/2014; 127(10). DOI:10.1007/s00122-014-2375-y · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Premise of the study: Simple sequence repeat markers were developed based on expressed sequence tags (EST-SSR) and screened for polymorphism among 23 Pisum sativum individuals to assist development and refinement of pea linkage maps. In particular, the SSR markers were developed to assist in mapping of white mold disease resistance quantitative trait loci. Methods and Results: Primer pairs were designed for 46 SSRs identified in EST contiguous sequences assembled from a 454 pyrosequenced transcriptome of the pea cultivar, 'LIFTER'. Thirty-seven SSR markers amplified PCR products, of which 11 (30%) SSR markers produced polymorphism in 23 individuals, including parents of recombinant inbred lines, with two to four alleles. The observed and expected heterozygosities ranged from 0 to 0.43 and from 0.31 to 0.83, respectively. Conclusions: These EST-SSR markers for pea will be useful for refinement of pea linkage maps, and will likely be useful for comparative mapping of pea and as tools for marker-based pea breeding.
    01/2013; 1(1). DOI:10.3732/apps.1200249


Available from