Article

Transcriptome profiling in neurodegenerative disease.

School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
Journal of neuroscience methods (Impact Factor: 2.3). 11/2010; 193(2):189-202. DOI: 10.1016/j.jneumeth.2010.08.018
Source: PubMed

ABSTRACT Changes in gene expression and splicing patterns (that occur prior to the onset and during the progression of complex diseases) have become a major focus of neurodegenerative disease research. These signature patterns of gene expression provide clues about the mechanisms involved in the molecular pathogenesis of neurodegenerative disease and may facilitate the discovery of novel therapeutic drugs. With the development of array technologies and the very recent RNA-seq technique, our understanding of the pathogenesis of neurodegenerative disease is expanding exponentially. Here, we review the technologies involved in gene expression and splicing analysis and the related literature on three common neurodegenerative diseases: Alzheimer's disease, Parkinson's disease and Huntington's disease.

0 Bookmarks
 · 
73 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The microtubule (MT) system is important for many aspects of neuronal function, including motility, differentiation, and cargo trafficking. Parkinson's disease (PD) is associated with increased oxidative stress and alterations in the integrity of the axodendritic tree. To study dynamic mechanisms underlying the neurite shortening phenotype observed in many PD models, we employed the well-characterized oxidative parkinsonian neurotoxin, 6-hydroxydopamine (6OHDA). In both acute and chronic sub-lethal settings, 6OHDA-induced oxidative stress elicited significant alterations in MT dynamics, including reductions in MT growth rate, increased frequency of MT pauses/retractions, and increased levels of tubulin acetylation. Interestingly, 6OHDA decreased the activity of tubulin deacetylases, specifically sirtuin 2 (SIRT2), through more than one mechanism. Restoration of tubulin deacetylase function rescued the changes in MT dynamics and prevented neurite shortening in neuron-differentiated, 6OHDA-treated cells. These data indicate that impaired tubulin deacetylation contributes to altered MT dynamics in oxidatively-stressed cells, conferring key insights for potential therapeutic strategies to correct MT-related deficits contributing to neuronal aging and disease.
    Experimental Neurology 05/2014; · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stress plays a profound role in the onset of affective disorders, including an elevation in risk factors for depression and anxiety. Women are twice as vulnerable to stress as men because of greater sensitivity to a substance produced during times of anxiety. To better define the abnormal proteins implicated in cognitive deficits and other stress-induced dysfunction, female rats were exposed to terrified sound stress, and two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) were utilized to determine the differential protein expression in the hippocampus in sound-stressed female rats compared with controls. Quantitative differences were found in 44 protein spots which were differentially expressed between the stressed and control groups (fold change of >2; p < 0.01). Eighteen protein spots were downregulated, and 26 protein spots were upregulated in the stressed group. The seven most differentially expressed proteins were identified and validated as follows: dihydropyrimidinase-related protein 2 (DRP-2), creatine kinase B type, dynamin-1 protein, alpha-internexin, glial fibrillary acidic protein beta, gamma-enolase, and peptidyl-prolyl cis-trans isomerase A. Changes in protein levels were detected in the hippocampus of female rats subjected to terrified sound stress. The findings herein may open new opportunities for further investigations on the modulation induced in the hippocampus by stress at the molecular level, especially with respect to females stress.
    Journal of Molecular Neuroscience 02/2014; · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the central research questions on the etiology of Alzheimer's disease (AD) is the elucidation of the molecular signatures triggered by the amyloid cascade of pathological events. Next-generation sequencing allows the identification of genes involved in disease processes in an unbiased manner. We have combined this technique with the analysis of two AD mouse models: (1) The 5XFAD model develops early plaque formation, intraneuronal Aβ aggregation, neuron loss, and behavioral deficits. (2) The Tg4-42 model expresses N-truncated Aβ4-42 and develops neuron loss and behavioral deficits albeit without plaque formation. Our results show that learning and memory deficits in the Morris water maze and fear conditioning tasks in Tg4-42 mice at 12 months of age are similar to the deficits in 5XFAD animals. This suggested that comparative gene expression analysis between the models would allow the dissection of plaque-related and -unrelated disease relevant factors. Using deep sequencing differentially expressed genes (DEGs) were identified and subsequently verified by quantitative PCR. Nineteen DEGs were identified in pre-symptomatic young 5XFAD mice, and none in young Tg4-42 mice. In the aged cohort, 131 DEGs were found in 5XFAD and 56 DEGs in Tg4-42 mice. Many of the DEGs specific to the 5XFAD model belong to neuroinflammatory processes typically associated with plaques. Interestingly, 36 DEGs were identified in both mouse models indicating common disease pathways associated with behavioral deficits and neuron loss.
    Frontiers in Aging Neuroscience 01/2014; 6:75. · 5.20 Impact Factor