InfarctSizer: Computing infarct volume from brain images of a stroke animal model

School of Computer Science and Engineering, Inha University, Incheon, South Korea.
Computer Methods in Biomechanics and Biomedical Engineering (Impact Factor: 1.77). 06/2011; 14(6):497-504. DOI: 10.1080/10255842.2010.482528
Source: PubMed


Many computational methods for determining the infarct volume from the image of 2,3,5-triphenyltetrazolium chloride-stained brain slices rely on the discretion of the user to determine the infarct region by visual inspection. Once the user determines the infarct boundary by visual inspection, the methods compute the area within the boundary with the assumption that all the spots within the boundary have been infarcted at the same level. However, in the same brain image, partially infarcted spots often tend to appear pinkish whereas fully or severely infarcted spots appear white. We developed a program called InfarctSizer, which automatically detects the infarct region and computes the infarct volume proportional to infarction levels. Comparison of InfarctSizer with other methods shows that InfarctSizer computes the infarct volume more accurately and efficiently than other methods. InfarctSizer and sample brain images are available at

9 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evaluating infarct volume is the primary outcome for experimental ischemic stroke studies and is a major factor in determining translation of a drug into clinical trials. Numerous algorithms are available for evaluating this critical value, but a major limitation of current algorithms is that brain swelling is not appropriately considered. The model by Lin et al. is widely used, but overestimates swelling within the infarction, yielding infarct volumes which do not reflect the true infarct size. Herein, a new infarct volume algorithm is developed to minimize the effects of both peri-infarct and infarct core swelling on infarct volume measurement. 2,3,5-Triphenyl-2H-tetrazolium chloride-stained brain tissue of adult rats subjected to middle cerebral artery occlusion was used for infarct volume analysis. When both peri-infarct swelling and infarction core swelling are removed from infarct volume calculations, such as accomplished by our algorithm, larger infarct volumes are estimated than those of Lin et al.'s algorithm. Furthermore, the infarct volume difference between the two algorithms is the greatest for small infarcts (<10 % of brain volume) when peri-infarct swelling is the greatest. Finally, using data from four published studies, our algorithm is compared to Lin et al.'s algorithm. Our algorithm offers a more reliable estimation of the infarct volume after ischemic brain injury, and thus may provide the foundation for comparing infarct volumes between experimental studies and standardizing infarct volume quantification to aid in the selection of the best candidates for clinical trials.
    Translational Stroke Research 05/2015; 6(4). DOI:10.1007/s12975-015-0400-3 · 2.44 Impact Factor