Article

Identification and distribution of Bacillus species in doenjang by whole-cell protein patterns and 16S rRNA gene sequence analysis.

Institute of Life Sciences & Resources and Graduate School of Biotechnology, Kyung Hee University, Yongin, Korea.
Journal of Microbiology and Biotechnology (Impact Factor: 1.4). 08/2010; 20(8):1210-4. DOI:10.4014/jmb.1002.02008
Source: PubMed

ABSTRACT Many bacteria are involved in fermentation of doenjang and Bacillus species are known to perform significant roles. Although the SDS-PAGE technique has been frequently used for classification and identification of bacteria in various samples, there has been no investigation of the microbial diversity in doenjang. This study aims to investigate the identification and distribution of dominant Bacillus species in doenjang using SDS-PAGE profiles of whole cell proteins and 16S rDNA sequencing. SDS-PAGE of whole cell proteins of the reference Bacillus strains yielded differential banding patterns that could be considered to be highly specific fingerprints. Bacterial strains isolated from doenjang samples were grouped using whole cell protein patterns, which were confirmed by the analysis of 16S rDNA sequencing. B. subtilis was found to be the most dominant strain in most of the samples, and B. licheniformis and B. amyloliquefaciens were less frequently detected. The results obtained in this study showed that a combined identification method, SDS-PAGE patterns of whole cell proteins and subsequent 16S rDNA sequence analysis, could successfully identify Bacillus species isolated from doenjang.

0 0
 · 
0 Bookmarks
 · 
78 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf) operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. 1879 The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications.
  • [show abstract] [hide abstract]
    ABSTRACT: The multidrug-resistance gene cfr was detected in coagulase-negative staphylococci from 3/401 pigs, 15/305 chickens, and 3/78 ducks from 31 different farms and one slaughterhouse in 2 provinces of China. Twenty of the 21 cfr-positive isolates were methicillin-resistant. Various SmaI-PFGE patterns were observed among the isolates of the same staphylococcal species and suggested horizontal transfer of cfr rather than clonal expansion. The detection of cfr on plasmids in the majority of the isolates supported this assumption. Analysis of the drug usage records of the farms strongly correlated with the resistance patterns of the cfr-positive isolates and suggested that antimicrobial use on farms supports the spread of the cfr gene.
    International journal of medical microbiology: IJMM 01/2013; · 4.54 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Genetic characterisation of linezolid-resistant Gram-positive cocci in a multicentre study in China has not been reported previously. To study the mechanism underlying the resistance of linezolid-resistant isolates, nine Enterococcus faecalis, one Enterococcus faecium and three Staphylococcus cohnii isolates with various levels of resistance were collected from five hospitals across China in 2009-2012. The nine E. faecalis isolates were classified into seven sequence types, indicating that these linezolid-resistant E. faecalis isolates were polyclonal. Enterococci isolates had reduced susceptibility to linezolid (MICs of 4-8mg/L) and had mutation of ribosomal protein L3, with three also having mutation of L4, but without the multidrug resistance gene cfr or the 23S rRNA mutation G2576T. The three S. cohnii isolates were highly resistant to linezolid (MICs of 64mg/L to >256mg/L), harboured the cfr gene and had the 23S rRNA mutation G2576T. Southern blotting indicated that the cfr gene of these three isolates resided on different plasmids (pHK01, pRM01 and pRA01). In plasmid pHK01, IS21-558 and the cfr gene were integrated into transposon Tn558. In plasmids pRM01 and pRA01, the cfr gene was flanked by two copies of an IS256-like insertion sequence, indicating that the transferable form of linezolid resistance is conferred by the cfr gene. In conclusion, the emergence of linezolid-resistant Gram-positive cocci in different regions of China is of concern. The cfr gene and the 23S rRNA mutation contribute to high-level linezolid resistance in S. cohnii, and the L3 and L4 mutations are associated with low-level linezolid resistance in enterococci.
    International journal of antimicrobial agents 07/2013; · 3.03 Impact Factor