Article

Cubilin is essential for albumin reabsorption in the renal proximal tubule.

INSERM UMR S968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France.
Journal of the American Society of Nephrology (Impact Factor: 8.99). 11/2010; 21(11):1859-67. DOI: 10.1681/ASN.2010050492
Source: PubMed

ABSTRACT Receptor-mediated endocytosis is responsible for protein reabsorption in the proximal tubule. This process involves two interacting receptors, megalin and cubilin, which form a complex with amnionless. Whether these proteins function in parallel or as part of an integrated system is not well understood. Here, we report the renal effects of genetic ablation of cubilin, with or without concomitant ablation of megalin, using a conditional Cre-loxP system. We observed that proximal tubule cells did not localize amnionless to the plasma membrane in the absence of cubilin, indicating a mutual dependency of cubilin and amnionless to form a functional membrane receptor complex. The cubilin-amnionless complex mediated internalization of intrinsic factor-vitamin B12 complexes, but megalin considerably increased the uptake. Furthermore, cubilin-deficient mice exhibited markedly decreased uptake of albumin by proximal tubule cells and resultant albuminuria. Inactivation of both megalin and cubilin did not increase albuminuria, indicating that the main role of megalin in albumin reabsorption is to drive the internalization of cubilin-albumin complexes. In contrast, cubulin deficiency did not affect urinary tubular uptake or excretion of vitamin D-binding protein (DBP), which binds cubilin and megalin. In addition, we observed cubilin-independent reabsorption of the "specific" cubilin ligands transferrin, CC16, and apoA-I, suggesting a role for megalin and perhaps other receptors in their reabsorption. In summary, with regard to albumin, cubilin is essential for its reabsorption by proximal tubule cells, and megalin drives internalization of cubilin-albumin complexes. These genetic models will allow further analysis of protein trafficking in the progression of proteinuric renal diseases.

0 Bookmarks
 · 
188 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intravital 2-photon microscopy, along with the development of fluorescent probes and innovative software, has rapidly advanced the study of intracellular and intercellular processes at the organ level. Researchers can quantify the distribution, behavior, and dynamic interactions of up to four labeled chemical probes and proteins simultaneously and repeatedly in four dimensions (3D + time) with subcellular resolution in real time. Transgenic fluorescently labeled proteins, delivery of plasmids, and photo-activatable probes enhance these possibilities. Thus, multi-photon microscopy has greatly extended our ability to understand cell biology intra-vitally at cellular and subcellular levels. For example, evaluation of rat surface glomeruli and accompanying proximal tubules has shown the long held paradigm regarding limited albumin filtration under physiologic conditions is to be questioned. Furthermore, the role of proximal tubules in determining albuminuria under physiologic and disease conditions was supported by direct visualization and quantitative analysis.
    Transactions of the American Clinical and Climatological Association 01/2014; 125:343-57.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serum albumin is a multi-functional protein that is able to bind and transport numerous endogenous and exogenous compounds. The development of albumin drug carriers is gaining increasing importance in the targeted delivery of cancer therapy, particularly as a result of the market approval of the paclitaxel-loaded albumin nanoparticle, Abraxane®. Considering this, there is renewed interest in isolating and characterizing albumin-binding proteins or receptors on the plasma membrane that are responsible for albumin uptake. Initially, the cellular uptake and intracellular localization of albumin was unknown due to the large confinement of the protein within the vascular and interstitial compartment of the body. Studies have since assessed the intracellular localization of albumin in order to understand the mechanisms and pathways responsible for its uptake, distribution and catabolism in multiple tissues, and this is reviewed herein.
    Frontiers in physiology. 01/2014; 5:299.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In man, mutations of the megalin-encoding gene causes the rare Donnai-Barrow/Facio-Oculo-Acoustico-Renal Syndrome, which is partially characterized by high-grade myopia. Previous studies of renal megalin function have established that megalin is crucial for conservation of renal filtered nutrients including vitamin A; however, the role of megalin in ocular physiology and development is presently unknown. Therefore, we investigate ocular megalin expression and the ocular phenotype of megalin-deficient mice. Topographical and subcellular localization of megalin as well as the ocular phenotype of megalin-deficient mice were examined with immunological techniques using light, confocal and electron microscopy. We identified megalin in the retinal pigment epithelium (RPE) and non-pigmented ciliary body epithelium (NPCBE) in normal mouse eyes. Immunocytochemical investigations furthermore showed that megalin localizes to vesicular structures in the RPE and NPCBE cells. Histological investigations of ocular mouse tissue also identified a severe myopia phenotype as well as enlarged RPE melanosomes and abnormal ciliary body development in the megalin-deficient mice. In conclusion, the complex ocular phenotype observed in the megalin-deficient mice suggests that megalin-mediated developmental abnormalities may contribute to the high myopia phenotype observed in the Donnai-Barrow Syndrome patients and, thus, that megalin harbors important roles in ocular development and physiology. Finally, our data show that megalin-deficient mice may provide a valuable model for future studies of megalin in ocular physiology and pathology.
    Cell and Tissue Research 07/2014; · 3.68 Impact Factor

Full-text (2 Sources)

Download
81 Downloads
Available from
May 29, 2014