Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells.

Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India.
Bioresource technology 01/2011; 102(2):1516-20. DOI: 10.1016/j.biortech.2010.07.117
Source: PubMed

ABSTRACT The toxicity of two commonly used nanoparticles, silver and zinc oxide on mesophilic and halophilic bacterial cells has been investigated. Enterobacter sp., Marinobacter sp., Bacillus subtilis, halophilic bacterium sp. EMB4, were taken as model systems. The nanotoxicity was more pronounced on Gram negative bacteria. ZnO nanoparticles reduced the growth of Enterobacter sp. by 50%, while 80% reduction was observed in halophilic Marinobacter sp. In case of halophiles, this may be attributed to higher content of negatively charged cardiolipins on their cell surface. Interestingly, bulk ZnO exerted minimal reduction in growth. Ag nanoparticles were similarly cytotoxic. Nanotoxicity towards Gram positive cells was significantly less, possibly due to presence of thicker peptidoglycan layer. The bacterium nanoparticle interactions were probed by electron microscopy and energy dispersive X-ray analysis. The results indicated electrostatic interactions between nanoparticles and cell surface as the primary step towards nanotoxicity, followed by cell morphological changes, increase in membrane permeability and their accumulation in the cytoplasm.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Emergence of multi-resistant organisms (MROs) leads to ineffective treatment with the currently available medications which pose a great threat to public health and food technology sectors. In this regard, there is an urgent need to strengthen the present therapies or to look over for other potential alternatives like use of "metal nanocomposites". Thus, the present study focuses on synthesis of silver-zinc oxide (Ag-ZnO) nanocomposites which will have a broad-spectrum antibacterial activity against Gram-positive and Gram-negative bacteria. Ag-ZnO nanocomposites of varied molar ratios were synthesized by simple microwave assisted reactions in the absence of surfactants. The crystalline behavior, composition and morphological analysis of the prepared powders were evaluated by X-ray diffraction, infrared spectroscopy, field emission scanning electron microscopy (FE-SEM) and atomic absorption spectrophotometry (AAS). Particle size measurements were carried out by transmission electron microscopy (TEM). Staphylococcus aureus and recombinant green fluorescent protein (GFP) expressing antibiotic resistant Escherichia coli were selected as Gram-positive and Gram-negative model systems respectively and the bactericidal activity of Ag-ZnO nanocomposite was studied. The minimum inhibitory concentration (MIC) and minimum killing concentration (MKC) of the nanocomposite against the model systems were determined by visual turbidity analysis and optical density analysis. Qualitative and quantitative assessments of its antibacterial effects were performed by fluorescent microscopy, fluorescent spectroscopy and Gram staining measurements. Changes in cellular morphology were examined by atomic force microscopy (AFM), FE-SEM and TEM. Finally, on the basis of the present investigation and previously published reports, a plausible antibacterial mechanism of Ag-ZnO nanocomposites was proposed.
    Colloids and surfaces B: Biointerfaces 12/2013; 115C:359-367. · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zinc has been shown to be an inhibitor of apoptosis for many years. The present study was designed to investigate effects of three zinc chemical forms on H2O2-induced cell apoptosis in IEC-6 cells via analysis of cell vitality, LDH activity, apoptosis percentage, caspase-3 activity, and Bcl-2, Bax, and caspase-3, -8, and -9 gene expression. Cells were divided into H2O2 and zinc sources+H2O2 groups, and there are three different zinc sources [zinc oxide nanoparticle (nano-ZnO), zinc oxide (ZnO), and zinc sulfate (ZnSO4)] and three concentrations (normal = 25 μM, medium = 50 μM, and high = 100 μM) used in this article. In the present study, we found the striking cytotoxicity of H2O2 higher than 200 μM on cell vitality, LDH activity, and apoptosis percentage in the cells using five different concentrations (50, 100, 200, 400, and 800 μM) of H2O2 for 4 h. Moreover, we observed that cell vitality was increased, LDH activity and apoptotic percentage were decreased, and gene expression level of Bax and caspase-3 and -9 was markedly reduced, while gene expression level of Bcl-2 and ratio of Bcl-2/Bax were increased in normal concentration groups of nano-ZnO and ZnSO4 compared with H2O2 group, but no significant difference was observed in caspase-8 gene expression. Furthermore, medium or, more intensely, high concentrations of nano-ZnO and ZnSO4 enhanced H2O2-induced cell apoptosis. Compared with nano-ZnO and ZnSO4, ZnO showed weakest protective effect on H2O2-induced apoptosis at normal concentration and was less toxic to cells at high level. Taken together, we proposed that preventive and protective effects of zinc on H2O2-induced cell apoptosis varied in IEC-6 cells with its chemical forms and concentrations, and maybe for the first time, we suggested that nano-ZnO have a protective effect on H2O2-induced cell apoptosis in IEC-6 cells.
    Biological trace element research 08/2013; · 1.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the mechanism of nanoparticle (NP) induced toxicity in microbes is of potential importance to a variety of disciplines including disease diagnostics, biomedical implants, and environmental analysis. In this context, toxicity to bacterial cells and inhibition of biofilm formation by GaN NPs and their functional derivatives have been investigated against gram positive and gram negative bacterial species down to single cellular level. High levels of inhibition of biofilm formation ([80 %) was observed on treatments with GaN NPs at sub-micro molar concentrations. These results were substantiated with morphological features investigated with field emission scanning electron microscope, and the observed changes in vibrational modes of microbial cells using Raman spectroscopy. Raman spectra provided molecular interpretation of cell damage by registering signatures of molecular vibrations of individual living microbial cells and mapping the interplay of proteins at the cell membrane. As compared to the untreated cells, Raman spectra of NP-treated cells showed an increase in the intensities of characteristic protein bands, which confirmed membrane damage and subsequent release of cellular contents outside the cells. Raman spectral mapping at single cellular level can facilitate understanding of the mechanistic aspect of toxicity of GaN NPs. The effect may be correlated to passive diffusion causing mechanical damage to the membrane or ingress of Ga3? (ionic radius*0.076 nm) which can potentially interfere with bacterial metabolism, as it resembles Fe2? (ionic radius*0.077 nm), which is essential for energy metabolism.
    Journal of Nanoparticle Research 07/2013; 15(8):1841. · 2.18 Impact Factor