Article

Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells.

Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India.
Bioresource Technology (Impact Factor: 5.04). 01/2011; 102(2):1516-20. DOI: 10.1016/j.biortech.2010.07.117
Source: PubMed

ABSTRACT The toxicity of two commonly used nanoparticles, silver and zinc oxide on mesophilic and halophilic bacterial cells has been investigated. Enterobacter sp., Marinobacter sp., Bacillus subtilis, halophilic bacterium sp. EMB4, were taken as model systems. The nanotoxicity was more pronounced on Gram negative bacteria. ZnO nanoparticles reduced the growth of Enterobacter sp. by 50%, while 80% reduction was observed in halophilic Marinobacter sp. In case of halophiles, this may be attributed to higher content of negatively charged cardiolipins on their cell surface. Interestingly, bulk ZnO exerted minimal reduction in growth. Ag nanoparticles were similarly cytotoxic. Nanotoxicity towards Gram positive cells was significantly less, possibly due to presence of thicker peptidoglycan layer. The bacterium nanoparticle interactions were probed by electron microscopy and energy dispersive X-ray analysis. The results indicated electrostatic interactions between nanoparticles and cell surface as the primary step towards nanotoxicity, followed by cell morphological changes, increase in membrane permeability and their accumulation in the cytoplasm.

0 Bookmarks
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the potential adverse effects of zinc oxide nanoparticles (ZnO(SM20[-]) NPs; negatively charged, 20 nm) on pregnant dams and embryo-fetal development after maternal exposure over the period of gestational days 5-19 with Sprague Dawley rats. ZnO(SM20(-)) NPs were administered to pregnant rats by gavage at 0 mg/kg/day, 100 mg/kg/day, 200 mg/kg/day, and 400 mg/kg/day. All dams were subjected to caesarean section on gestational day 20, and all the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight at 400 mg/kg/day and decreased liver weight, and increased adrenal glands weight at 200 mg/kg/day and 400 mg/kg/day. However, no treatment-related difference in the number of corpora lutea, the number of implantation sites, the implantation rate (%), resorption, dead fetuses, litter size, fetal deaths, fetal and placental weights, and sex ratio were observed between the groups. Morphological examinations of the fetuses demonstrated no significant difference in the incidences of abnormalities between the groups. No significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that a 15-day repeated oral dose of ZnO(SM20(-)) was minimally maternotoxic at dose of 200 mg/kg/day and 400 mg/kg/day.
    International Journal of Nanomedicine 01/2014; 9 Suppl 2:145-57. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the cytotoxicity, genotoxicity, and growth inhibition effects of four different inorganic nanoparticles (NPs) such as aluminum (nAl), iron (nFe), nickel (nNi), and zinc (nZn) on a dibenzofuran (DF) degrading bacterium Agrobacterium sp. PH-08. NP (0-1,000 mg L(-1)) -treated bacterial cells were assessed for cytotoxicity, genotoxicity, growth and biodegradation activities at biochemical and molecular levels. In an aqueous system, the bacterial cells treated with nAl, nZn and nNi at 500 mg L(-1) showed significant reduction in cell viability (30-93.6 %, p < 0.05), while nFe had no significant inhibition on bacterial cell viability. In the presence of nAl, nZn and nNi, the cells exhibited elevated levels of reactive oxygen species (ROS), DNA damage and cell death. Furthermore, NP exposure showed significant (p < 0.05) impairment in DF and catechol biodegradation activities. The reduction in DF biodegradation was ranged about 71.7-91.6 % with single NPs treatments while reached up to 96.3 % with a mixture of NPs. Molecular and biochemical investigations also clearly revealed that NP exposure drastically affected the catechol-2,3-dioxygenase activities and its gene (c23o) expression. However, no significant inhibition was observed in nFe treatment. The bacterial extracellular polymeric materials and by-products from DF degradation can be assumed as key factors in diminishing the toxic effects of NPs, especially for nFe. This study clearly demonstrates the impact of single and mixed NPs on the microbial catabolism of xenobiotic-degrading bacteria at biochemical and molecular levels. This is the first study on estimating the impact of mixed NPs on microbial biodegradation.
    Biodegradation 09/2014; 25(5):655-68. · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the potential adverse effects of zinc oxide nanoparticles ([ZnO(SM20(+)) NPs] zinc oxide nanoparticles, positively charged, 20 nm) on pregnant dams and embryo-fetal development after maternal exposure over the period of gestational days 5-19 with Sprague-Dawley rats. ZnO(SM20(+)) NPs were administered to pregnant rats by gavage at 0, 100, 200, and 400 mg/kg/day. All dams were subjected to a cesarean section on gestational day 20, and all of the fetuses were examined for external, visceral, and skeletal alterations. Toxicity in the dams manifested as significantly decreased body weight after administration of 400 mg/kg/day NPs; reduced food consumption after administration of 200 and 400 mg/kg/day NPs; and decreased liver weight and increased adrenal glands weight after administration of 400 mg/kg/day NPs. However, no treatment-related difference in: number of corpora lutea; number of implantation sites; implantation rate (%); resorption; dead fetuses; litter size; fetal deaths and placental weights; and sex ratio were observed between the groups. On the other hand, significant decreases between treatment groups and controls were seen for fetal weights after administration of 400 mg/kg/day NPs. Morphological examinations of the fetuses demonstrated significant differences in incidences of abnormalities in the group administered 400mg/kg/day. Meanwhile, no significant difference was found in the Zn content of fetal tissue between the control and high-dose groups. These results showed that oral doses for the study with 15-days repeated of ZnO(SM20(+)) NPs were maternotoxic in the 200 mg/kg/day group, and embryotoxic in the 400 mg/kg/day group.
    International Journal of Nanomedicine 01/2014; 9 Suppl 2:159-71. · 4.20 Impact Factor