Comprehensive embryo analysis of advanced maternal age-related aneuploidies and mosaicism by short comparative genomic hybridization.

Unitat de Biologia Cellular i Genètica Mèdica, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
Fertility and sterility (Impact Factor: 4.3). 01/2011; 95(1):413-6. DOI: 10.1016/j.fertnstert.2010.07.1051
Source: PubMed

ABSTRACT The short comparative genomic hybridization (short-CGH) method was used to perform a comprehensive cytogenetic study of isolated blastomeres from advanced maternal age embryos, discarded after fluorescent in situ hybridization (FISH) preimplantation genetic screening (PGS), detecting aneuploidies (38.5% of which corresponded to chromosomes not screened by 9-chromosome FISH), structural aberrations (31.8%), and mosaicism (77.3%). The short-CGH method was subsequently applied in one PGS, achieving a twin pregnancy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Preimplantation genetic diagnosis (PGD) has been applied worldwide for a great variety of single‐gene disorders over the last 20 years. The aim of this work was to perform a double‐factor preimplantation genetic diagnosis (DF‐PGD) protocol in a family at risk for Lynch syndrome. The family underwent a DF‐PGD approach in which two blastomeres from each cleavage‐stage embryo were biopsied and used for monogenic and comprehensive cytogenetic analysis, respectively. Fourteen embryos were biopsied for the monogenic disease and after multiple displacement amplification (MDA), 12 embryos were diagnosed; 5 being non‐affected and 7 affected by the disease. Thirteen were biopsied to perform the aneuploidy screening by short‐comparative genomic hybridization (CGH). The improved DF‐PGD approach permitted the selection of not only healthy but also euploid embryos for transfer. This has been the first time a double analysis of embryos has been performed in a family affected by Lynch syndrome, resulting in the birth of two healthy children. The protocol described in this work offers a reliable alternative for single‐gene disorder assessment together with a comprehensive aneuploidy screening of the embryos that may increase the chances of pregnancy and birth of transferred embryos.
    Clinical Genetics 07/2013; 84(1). DOI:10.1111/cge.12025 · 3.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most in vitro fertilization (IVF) experts and infertility patients agree that the most ideal assisted reproductive technology (ART) outcome is to have a healthy, full-term singleton born. To this end, the most reliable policy is the single-embryo transfer (SET). However, unsatisfactory results in IVF may result from plenty of factors, in which aneuploidy associated with advanced maternal age is a major hurdle. Throughout the past few years, we have got a big leap in advancement of the genetic screening of embryos on aneuploidy, translocation, or mutations. This facilitates a higher success rate in IVF accompanied by the policy of elective SET (eSET). As the cost is lowering while the scale of genome characterization continues to be up over the recent years, the contemporary technologies on trophectoderm biopsy and freezing-thaw, comprehensive chromosome screening (CCS) with eSET appear to be getting more and more popular for modern IVF centers. Furthermore, evidence has showen that, by these avant-garde techniques (trophectoderm biopsy, vitrification, and CCS), older infertile women with the help of eSET may have an opportunity to increase the success of their live birth rates approaching those reported in younger infertility patients.
    Obstetrics and Gynecology International 06/2014; 2014:581783. DOI:10.1155/2014/581783
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since its inception, in vitro fertilization (IVF) has pursued molecular technology to improve patient outcomes, leading to enhanced methods of embryo selection. Comprehensive chromosomal screening (CCS) is a powerful tool that decreases maternal and neonatal morbidity due to multiple gestations by allowing the transfer of fewer embryos while maintaining success rates. To optimize this genetic test, physiological principles limiting the timing and type of cells to be removed had to be realized. Molecular barriers involved in genome amplification and ensuring the accuracy and validity of the CCS platform required a multistep approach to ensure that this technology was not used prematurely. Only after ensuring that the potential for harm was minimized and benefit maximized could clinicians use this technology to improve patient care.
    Trends in Molecular Medicine 09/2014; DOI:10.1016/j.molmed.2014.06.006 · 10.11 Impact Factor