Article

Involvement and mechanism of DGAT2 upregulation in the pathogenesis of alcoholic fatty liver disease.

Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA.
The Journal of Lipid Research (Impact Factor: 4.39). 11/2010; 51(11):3158-65. DOI: 10.1194/jlr.M007948
Source: PubMed

ABSTRACT The mechanisms involved in the development of alcoholic liver disease (ALD) are not well established. We investigated the involvement of acyl-CoA: diacylglycerol acyltransferase 2 (DGAT2) upregulation in mediating hepatic fat accumulation induced by chronic alcohol consumption. Chronic alcohol feeding caused fatty liver and increased hepatic DGAT2 gene and protein expression, concomitant with a significant suppression of hepatic MAPK/ERK kinase/extracellular regulated kinase 1/2 (MEK/ERK1/2) activation. In vitro studies demonstrated that specific inhibitors of the MEK/ERK1/2 pathway increased DGAT2 gene expression and triglyceride (TG) contents in HepG2 cells, whereas epidermal growth factor, a strong ERK1/2 activator, had the opposite effect. Moreover, chronic alcohol feeding decreased hepatic S-adenosylmethionine (SAM): S-adenosylhomocysteine (SAH) ratio, an indicator of disrupted transmethylation reactions. Mechanistic investigations revealed that N-acetyl-S-farnesyl-L-cysteine, a potent inhibitor of isoprenylcysteine carboxyl methyltransferase, suppressed ERK1/2 activation, followed by an enhanced DGAT2 expression and an elevated TG content in HepG2 cells. Lastly, we demonstrated that the beneficial effects of betaine supplementation in ALD were associated with improved SAM/SAH ratio, alleviated ERK1/2 inhibition, and attenuated DGAT2 upregulation. In conclusion, our data suggest that upregulation of DGAT2 plays an important role in the pathogenesis of ALD, and that abnormal methionine metabolism contributes, at least partially, to DGAT2 upregulation via suppression of MEK/ERK1/2 activation.

0 Bookmarks
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of indolyl acrylamide derivatives was synthesized as potential diacylglycerol acyltransferase (DGAT) inhibitors. Furfurylamine containing indolyl acrylamide derivative exhibited the most potent DGAT inhibitory activity using microsomes prepared from rat liver. Further evaluation against human DGAT-1 and DGAT-2 identified indolyl acrylamide analogues as selective inhibitors against human DGAT-2. In addition, the most potent compound inhibited triglyceride synthesis dose-dependently in HepG2 cell lines.
    Organic & Biomolecular Chemistry 12/2012; · 3.57 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcohol abuse frequently causes niacin deficiency in association with the development of alcoholic liver disease. The objective of the present study was to determine whether dietary nicotinic acid (NA) deficiency exaggerates and whether dietary NA supplementation alleviates alcohol-induced fatty liver.
    Alcoholism Clinical and Experimental Research 05/2014; · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To outline recent advances in the understanding of the consequences of the alterations in the methionine metabolic pathway and to present new treatment options for alcoholic liver disease (ALD). ALD is a major healthcare problem worldwide. Findings in many laboratories, including ours, have demonstrated that ethanol consumption impairs several of the multiple steps in methionine metabolism that ultimately impairs the activity of many methyltransferases critical for normal functioning of the liver. Recent studies buttress the important role genetics may play in the development and progression of alcoholic liver injury. Treatment modalities using two important metabolites of the pathway, S-adenosylmethionine and betaine, have been shown to attenuate ethanol-induced liver injury in a variety of experimental models of liver disease. S-adenosylmethionine has been used in several clinical studies; however, the outcomes have been unclear and its efficacy in liver diseases continues to be debated. To date, no clinical trials have been conducted for treatment of ALD with betaine. Future treatment modalities for ALD should consider loss-of-function polymorphisms in the enzymes of the methionine metabolic and related pathways. Further new treatment modalities for ALD should consider supplementation with betaine that may prove to be a promising therapeutic agent.
    Current opinion in clinical nutrition and metabolic care. 01/2013; 16(1):89-95.