The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites.

Department of Materials Engineering, Monash University, Clayton, Victoria 3800, Australia.
Biomaterials (Impact Factor: 8.31). 11/2010; 31(33):8516-29. DOI: 10.1016/j.biomaterials.2010.07.105
Source: PubMed

ABSTRACT Biodegradable elastomeric materials have gained much recent attention in the field of soft tissue engineering. Poly(glycerol sebacate) (PGS) is one of a new family of elastomers which are promising candidates used for soft tissue engineering. However, PGS has a limited range of mechanical properties and has drawbacks, such as cytotoxicity caused by the acidic degradation products of very soft PGS and degradation kinetics that are too fast in vivo to provide sufficient mechanical support to the tissue. However, the development of PGS/based elastomeric composites containing alkaline bioactive fillers could be a method for addressing these drawbacks and thus may pave the way towards wide clinical applications. In this study, we synthesized a new PGS composite system consisting of a micron-sized Bioglass filler. In addition to much improved cytocompatibility, the PGS/Bioglass composites demonstrated three remarkable mechanical properties. First, contrary to previous reports, the addition of microsized Bioglass increases the elongation at break from 160 to 550%, while enhancing the Young's modulus of the composites by up to a factor of four. Second, the modulus of the PGS/Bioglass composites drops abruptly in a physiological environment (culture medium), and the level of drop can be tuned such that the addition of Bioglass does not harden the composite in vivo and thus the desired compliance required for soft tissue engineering are maintained. Third, after the abrupt drop in modulus, the composites exhibited mechanical stability over an extended period. This latter observation is an important feature of the new composites, because they can provide reliable mechanical support to damaged tissues during the lag phase of the healing process. These mechanical properties, together with improved biocompatibility, make this family of composites better candidates than plastic and related composite biomaterials for the applications of tissue engineering.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to develop degradable elastomers with a satisfactory combination of flexibility and enzyme-mediated degradation rate, the mechanical properties, enzymatic degradation kinetics and biocompatibility of poly(xylitol sebcate) (PXS) has been systematically investigated in comparison with poly(glycerol sebacate) (PGS). Under the same level of crosslinked density, the PXS elastomer networks have approximately twice the stretchability (elongation at break) of their PGS counterparts. This observation is attributable to the relatively longer and more orientable xylitol monomers, compared with glycerol molecules. Although xylitol monomers have two more hydroxyl groups, we, surprisingly, found that the hydrophilic side chains did not accelerate the water attack on the ester bonds of the PXS network, compared with their PGS counterpart. This observation was attributed to a steric hindrance effect, i.e. the large-sized hydroxyl groups can shield ester bonds from the attack of water molecules. In conclusion, the use of polyols of more than three -OH groups is an effective approach enhancing flexibility, whilst maintaining the degradation rate of polyester elastomers. Further development could be seen in the copolymerization of PPS with appropriate thermoplastic polyesters, such as poly(lactic acid) and polyhydroxyalkanoate.
    Biomedical Materials 04/2013; 8(3):035006. DOI:10.1088/1748-6041/8/3/035006 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidised multi-wall carbon nanotubes (MWCNTs)–(R)-polylactide (PLA) composite was prepared in 85% yield via in-bulk Ring Opening Polymerisation (ROP) of (R,R)-lactide at elevated temperature using a ‘grafting-from’ technique. Outer nanotube walls were firstly covalently functionalised with a β-d-uridine linker—through the more reactive hydroxyl group (5′-OH)—enabling further a direct growth of the polymer from the free secondary hydroxyl groups (2′- and 3′-OH) present in the β-d-ribofuranose moiety. The morphology and chemical structure of the composite were comprehensively studied revealing a high-quality MWCNT-filler dispersion and loading of ca. 7 wt%, accompanied by a high molecular weight (Mw) of the (R)-PLA matrix equal to 116,700 Da. The presence of nanotube-filler affected the alignment of polymer fibrils in the composite. The elaborated approach may be implemented to a larger scale fabrication of biodegradable composites for medicinal applications or other functional materials where an enhanced matrix-filler interaction is required.
    Materials Letters 01/2013; 91:50-54. DOI:10.1016/j.matlet.2012.09.061 · 2.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Driven by the increasing economic burden associated with bone injury and disease, biomaterial development for bone repair represents the most active research area in the field of tissue engineering. This article provides an update on recent advances in the development of bioactive biomaterials for bone regeneration. Special attention is paid to the recent developments of sintered Na-containing bioactive glasses, borate-based bioactive glasses, those doped with trace elements (such as Cu, Zn, and Sr), and novel elastomeric composites. Although bioactive glasses are not new to bone tissue engineering, their tunable mechanical properties, biodegradation rates, and ability to support bone and vascular tissue regeneration, as well as osteoblast differentiation from stem and progenitor cells, are superior to other bioceramics. Recent progresses on the development of borate bioactive glasses and trace element-doped bioactive glasses expand the repertoire of bioactive glasses. Although boride and other trace elements have beneficial effects on bone remodeling and/or associated angiogenesis, the risk of toxicity at high levels must be highly regarded in the design of new composition of bioactive biomaterials so that the release of these elements must be satisfactorily lower than their biologically safe levels. Elastomeric composites are superior to the more commonly used thermoplastic-matrix composites, owing to the well-defined elastic properties of elastomers which are ideal for the replacement of collagen, a key elastic protein within the bone tissue. Artificial bone matrix made from elastomeric composites can, therefore, offer both sound mechanical integrity and flexibility in the dynamic environment of injured bone.
    01/2012; 1(1). DOI:10.1186/2194-0517-1-2