Quinolones: from antibiotics to autoinducers

School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University Park, University of Nottingham, Nottingham, UK.
FEMS microbiology reviews (Impact Factor: 13.81). 03/2011; 35(2):247-74. DOI: 10.1111/j.1574-6976.2010.00247.x
Source: PubMed

ABSTRACT Since quinine was first isolated, animals, plants and microorganisms producing a wide variety of quinolone compounds have been discovered, several of which possess medicinally interesting properties ranging from antiallergenic and anticancer to antimicrobial activities. Over the years, these have served in the development of many synthetic drugs, including the successful fluoroquinolone antibiotics. Pseudomonas aeruginosa and related bacteria produce a number of 2-alkyl-4(1H)-quinolones, some of which exhibit antimicrobial activity. However, quinolones such as the Pseudomonas quinolone signal and 2-heptyl-4-hydroxyquinoline act as quorum-sensing signal molecules, controlling the expression of many virulence genes as a function of cell population density. Here, we review selectively this extensive family of bicyclic compounds, from natural and synthetic antimicrobials to signalling molecules, with a special emphasis on the biology of P. aeruginosa. In particular, we review their nomenclature and biochemistry, their multiple properties as membrane-interacting compounds, inhibitors of the cytochrome bc(1) complex and iron chelators, as well as the regulation of their biosynthesis and their integration into the intricate quorum-sensing regulatory networks governing virulence and secondary metabolite gene expression.

  • [Show abstract] [Hide abstract]
    ABSTRACT: AimsThe interaction of quinolone and indoloquinazoline alkaloids concerning their antimycobacterial activity was studied.Methods and ResultsThe antimycobacterial and modulating activity of evodiamine (1), rutaecarpine (2) and evocarpine (3) was tested on mycobacteria including three multidrug-resistant (MDR) clinical isolates of M. tuberculosis. Antagonistic effects were concluded from fractional inhibitory concentration (FICI) values. Interaction energies of the compounds were calculated using GLUE docking module implemented in GRID. 1 and 2 exhibited weak inhibition of rapidly growing mycobacteria, however, 1 was active against M. tuberculosis H37Rv (MIC = 10 mg l−1) while 2 was inactive. Both 1 and 2 showed a marked antagonistic effect on the susceptibility of different mycobacterial strains to 3 giving FICI values between 5 and 9. The interaction energies between compounds 1 and 2 with compound 3 suggested the possibility of complex formation in solution.Conclusions Indoloquinazoline alkaloids markedly reduce the antimycobacterial effect of the quinolone alkaloid evocarpine. Complex formation may play a role in the attenuation of its antimycobacterial activity.Significance and Impact of the StudyThis study gives a striking example of antagonism between compounds present in the same plant extract which should be considered in natural product based screening projects.This article is protected by copyright. All rights reserved.
    Journal of Applied Microbiology 01/2015; 118(4). DOI:10.1111/jam.12753 · 2.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pseudomonas aeruginosa is a well-known pathogenic bacterium that forms biofilms and produces virulence factors via quorum sensing (QS). Interfering with normal QS interactions between signal molecules and their cognate receptors is a developing strategy for attenuating its virulence. Here we tested the hypothesis that 6-gingerol, a pungent oil of fresh ginger, reduces biofilm formation and virulence by antagonistically binding to P. aeruginosa QS receptors. In silico studies demonstrated molecular binding occurs between 6-gingerol and the QS receptor LasR through hydrogen bonding and hydrophobic interactions. Experimentally 6-gingerol reduced biofilm formation, several virulence factors (e.g., exoprotease, rhamnolipid, and pyocyanin), and mice mortality. Further transcriptome analyses demonstrated that 6-gingerol successfully repressed QS-induced genes, specifically those related to the production of virulence factors. These results strongly support our hypothesis and offer insight into the molecular mechanism that caused QS gene repression.
    Scientific Reports 03/2015; 5:8656. DOI:10.1038/srep08656 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes.
    PLoS ONE 01/2015; 10(3):e0069533. DOI:10.1371/journal.pone.0069533 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 17, 2014