Does Kepler unveil the mystery of the Blazhko effect? First detection of period doubling in Kepler Blazhko RR Lyrae stars

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 07/2010; DOI: 10.1111/j.1365-2966.2010.17386.x
Source: arXiv

ABSTRACT The first detection of the period doubling phenomenon is reported in the Kepler RR Lyrae stars RR Lyr, V808 Cyg and V355 Lyr. Interestingly, all these pulsating stars show Blazhko modulation. The period doubling manifests itself as alternating maxima and minima of the pulsational cycles in the light curve, as well as through the appearance of half-integer frequencies located halfway between the main pulsation period and its harmonics in the frequency spectrum. The effect was found to be stronger during certain phases of the modulation cycle. We were able to reproduce the period doubling bifurcation in our nonlinear RR Lyrae models computed by the Florida-Budapest hydrocode. This enabled us to trace the origin of this instability in RR Lyrae stars to a resonance, namely a 9:2 resonance between the fundamental mode and a high-order (9th) radial overtone showing strange-mode characteristics. We discuss the connection of this new type of variation to the mysterious Blazhko effect and argue that it may give us fresh insights to solve this century-old enigma. Comment: 10 pages, 12 figures and 1 table, accepted for publication in MNRAS

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present three years of long-cadence and over one year of short-cadence photometry of the central star of the Planetary Nebula NGC 6826 obtained with the Kepler spacecraft, and temporally coinciding optical spectroscopy. The light curves are dominated by incoherent variability on time scales of several hours, but contain a lower-amplitude periodicity of 1.23799 d. The temporal amplitude and shape changes of this signal are best explicable with a rotational modulation, and are not consistent with a binary interpretation. We argue that we do not observe stellar pulsations within the limitations of our data, and show that a binary central star with an orbital period less than seven days could only have escaped our detection in the case of low orbital inclination. Combining the photometric and spectroscopic evidence, we reason that the hourly variations are due to a variable stellar wind, and are global in nature. The physical cause of the wind variability of NGC 6826 and other ZZ Leporis stars is likely related to the mechanism responsible for wind variations in massive hot stars.
    Monthly Notices of the Royal Astronomical Society 01/2013; 430(4). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Context. Discovered in 1907, the Blazhko effect is a modulation of the light variations of about half of the RR Lyr stars. It has remained unexplained for over 100 years, despite more than a dozen proposed explanations. Today it represents an ongoing challenge in variable-star research. Aims: We propose a new explanation. It is based on the observation that Blazhko stars seem to be located in the region of the instability strip where fundamental and first overtone modes are excited at the same time. Methods: An analysis of nonlinear and nonadiabatic pulsation models of RR Lyrae stars shows that a specific shock (called first overtone shock) may be generated by the perturbation of the fundamental mode by the transient first overtone. Results: The first overtone shock induces a sharp slowdown of the atmospheric layers during their infalling motion. This slowdown in turn affects the compression rate on the deep photospheric layers and the intensity of the κ-mechanism. After an amplification phase, the intensity of the main shock wave before the Blazhko maximum becomes high enough to provoke large radiative losses. These can be at least equal to 70% of the total energy flux of the shock, which induces a small decrease of the effective temperature at each pulsation cycle. In these conditions, when the intensity of the main shock reaches its highest critical value at the Blazhko maximum, it completely desynchronizes the motion of the phostospheric layers. At this point, the atmosphere relaxes and reaches a new synchronous state that occurs at the Blazhko minimum. Conclusions: The combined effects of these two shocks on the atmosphere cause the Blazhko effect. This effect can only exist if the first overtone mode is excited together with the fundamental mode. Because the involved physical mechanisms are essentially nonlinear (shocks, atmospheric dynamics, radiative losses, mode excitations), the Blazhko process is expected to be unstable and irregular. Consequently, the Blazhko process has a specific random nature that is in contrast with the pulsation of non-Blazhko stars.
    Astronomy and Astrophysics 06/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a comparison of popular period finding algorithms applied to the light curves of variable stars from the Catalina Real-time Transient Survey (CRTS), MACHO and ASAS data sets. We analyze the accuracy of the methods against magnitude, sampling rates, quoted period, quality measures (signal-to-noise and number of observations), variability, and object classes. We find that measure of dispersion-based techniques - analysis-of-variance with harmonics and conditional entropy - consistently give the best results but there are clear dependencies on object class and light curve quality. Period aliasing and identifying a period harmonic also remain significant issues. We consider the performance of the algorithms and show that a new conditional entropy-based algorithm is the most optimal in terms of completeness and speed. We also consider a simple ensemble approach and find that it performs no better than individual algorithms.
    Monthly Notices of the Royal Astronomical Society 07/2013; 434(4):3423. · 5.52 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014