Article

Absolute polarization angle calibration using polarized diffuse Galactic emission observed by BICEP

Proc SPIE 07/2010; DOI:10.1117/12.856855
Source: arXiv

ABSTRACT We present a method of cross-calibrating the polarization angle of a polarimeter using BICEP Galactic observations. \bicep\ was a ground based experiment using an array of 49 pairs of polarization sensitive bolometers observing from the geographic South Pole at 100 and 150 GHz. The BICEP polarimeter is calibrated to +/-0.01 in cross-polarization and less than +/-0.7 degrees in absolute polarization orientation. BICEP observed the temperature and polarization of the Galactic plane (R.A= 100 degrees ~ 270 degrees and Dec. = -67 degrees ~ -48 degrees). We show that the statistical error in the 100 GHz BICEP Galaxy map can constrain the polarization angle offset of WMAP Wband to 0.6 degrees +\- 1.4 degrees. The expected 1 sigma errors on the polarization angle cross-calibration for Planck or EPIC are 1.3 degrees and 0.3 degrees at 100 and 150 GHz, respectively. We also discuss the expected improvement of the BICEP Galactic field observations with forthcoming BICEP2 and Keck observations. Comment: 13 pages, 10 figures and 2 tables. To appear in Proceedings of SPIE Astronomical Telescopes and Instrumentation 2010

0 0
 · 
0 Bookmarks
 · 
75 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Robinson Telescope (BICEP) is a ground-based millimeter-wave bolometric array designed to study the polarization of the cosmic microwave background radiation (CMB) and galactic foreground emission. Such measurements probe the energy scale of the inflationary epoch, tighten constraints on cosmological parameters, and verify our current understanding of CMB physics. Robinson consists of a 250-mm aperture refractive telescope that provides an instantaneous field-of-view of 17 degrees with angular resolution of 55 and 37 arcminutes at 100 GHz and 150 GHz, respectively. Forty-nine pair of polarization-sensitive bolometers are cooled to 250 mK using a 4He/3He/3He sorption fridge system, and coupled to incoming radiation via corrugated feed horns. The all-refractive optics is cooled to 4 K to minimize polarization systematics and instrument loading. The fully steerable 3-axis mount is capable of continuous boresight rotation or azimuth scanning at speeds up to 5 deg/s. Robinson has begun its first season of observation at the South Pole. Given the measured performance of the instrument along with the excellent observing environment, Robinson will measure the E-mode polarization with high sensitivity, and probe for the B-modes to unprecedented depths. In this paper we discuss aspects of the instrument design and their scientific motivations, scanning and operational strategies, and the results of initial testing and observations. Comment: 18 pages, 11 figures. To appear in Millimeter and Submillimeter Detectors and Instrumentation for Astronomy III, Proceedings of SPIE, 6275, 2006
    Proc SPIE 06/2006;
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: The Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment was designed specifically to search for the signature of inflationary gravitational waves in the polarization of the cosmic microwave background (CMB). Using a novel small-aperture refractor and 49 pairs of polarization-sensitive bolometers, BICEP has completed three years of successful observations at the South Pole beginning in 2006 February. To constrain the amplitude of the inflationary B-mode polarization, which is expected to be at least 7 orders of magnitude fainter than the 3 K CMB intensity, precise control of systematic effects is essential. This paper describes the characterization of potential systematic errors for the BICEP experiment, supplementing a companion paper on the initial cosmological results. Using the analysis pipelines for the experiment, we have simulated the impact of systematic errors on the B-mode polarization measurement. Guided by these simulations, we have established benchmarks for the characterization of critical instrumental properties including bolometer relative gains, beam mismatch, polarization orientation, telescope pointing, sidelobes, thermal stability, and timestream noise model. A comparison of the benchmarks with the measured values shows that we have characterized the instrument adequately to ensure that systematic errors do not limit BICEP's two-year results, and identifies which future refinements are likely necessary to probe inflationary B-mode polarization down to levels below a tensor-to-scalar ratio r = 0.1.
    The Astrophysical Journal 02/2010; 711(2):1141. · 6.73 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We present results from and the analysis of data from MAXIPOL, a balloon-borne experiment designed to measure the polarization in the cosmic microwave background (CMB). MAXIPOL is the first CMB experiment to obtain results using a rotating half-wave plate as a rapid polarization modulator. We report results from observations of a sky area of 8 deg2 with 10' resolution, providing information up to ℓ ~ 700. We use a maximum likelihood method to estimate maps of the Q and U Stokes parameters from the demodulated time streams, and then both Bayesian and frequentist approaches to compute the EE, EB, and BB power spectra. Detailed formalisms of the analyses are given. We give results for the amplitude of the power spectra assuming different shape functions within the ℓ bins, with and without a prior C = C = 0, and with and without inclusion of calibration uncertainty. We show results from systematic tests including differencing of maps, analyzing sky areas of different sizes, assessing the influence of leakage from temperature to polarization, and quantifying the Gaussianity of the maps. We find no evidence for systematic errors. The Bayesian analysis gives weak evidence for an EE signal. The EE power is 55 μK2 at the 68% confidence level for ℓ = 151-693. Its likelihood function is asymmetric and skewed positive such that with a uniform prior the probability of a positive EE power is 96%. The powers of EB and BB signals at the 68% confidence level are 18 and -31 μK2, respectively, and thus consistent with zero. The upper limit of the BB-mode at the 95% confidence level is 9.5 μK. Results from the frequentist approach are in agreement within statistical errors. These results are consistent with the current concordance ΛCDM model.
    The Astrophysical Journal 12/2008; 665(1):55. · 6.73 Impact Factor

Full-text (2 Sources)

View
26 Downloads
Available from
Nov 8, 2012