Super star clusters in Haro 11: Properties of a very young starburst and evidence for a near-infrared flux excess

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 05/2010; DOI: 10.1111/j.1365-2966.2010.16983.x
Source: arXiv

ABSTRACT We have used multi-band imaging to investigate the nature of the extreme starburst environment in Haro 11 galaxy. The central starburst region has been observed in 8 HST wavebands and at 2.16 micron at the ESO-VLT. We constructed integrated spectral energy distributions (SEDs) for about 200 star clusters and compared them with single stellar population models in order to derive ages, masses and extinctions of thestar clusters. The present starburst has lasted for 40 Myr, and shows a peak of cluster formation only 3.5 Myr old. With such an extremely young cluster population, Haro 11 represents a unique opportunity to investigate the youngest phase of the cluster formation process and evolution in starburst systems. Extinction tends to diminish as function of the cluster age, but the spread is large and for clusters in partial embedded phases (< 5 Myr). A fraction of low-mass (> 10^4 Msun), very young (1-3 Myr) clusters is missing, either because they are embedded inthe parental molecular cloud and heavily extinguished, or because of blending. Almost half of the cluster sample is affected by flux excesses at wavelengths 8000 \AA which cannot be explained by simple stellar evolutionary models. Fitting SED models over all wavebands leads to systematic overestimates of cluster ages and incorrect masses for the stellar population supplying the light in these clusters. We show that the red excess affects also the HST F814W filter, which is typically used to constrain cluster physical properties. The clusters which show the red excess are younger than 40 Myr; we propose possible physical explanations for the phenomenon. Finally, we estimate that Haro 11 hasproduced bound clusters at a rate almost a factor of 10 higher than the massive and regular spirals, like the Milky Way. (Abriged) Comment: Accepted for publication in MNRAS. 23 pages, 23 figures

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this overview article we present some of the key projects we pursue in our Emmy Noether group. Our work is focused on nearby galaxies, where we use multi-wavelength, state-of-the-art survey data to probe distribution, abundance and properties of gas and dust in the interstellar medium (ISM) on ∼ kpc scales. We study the average, radial distributions of atomic (H I) and molecular hydrogen (H2) across the disks of spiral galaxies and assess local (on 1 kpc scales) correlations between H I, H2 and star formation rate (SFR) surface densities across the inner, optical disks of our sample of ∼ 30 spiral galaxies. The short H2 depletion times (∼ 2 Gyr) we find raises the question of if and how star formation is refueled in galactic disks. We look for such signatures of radial gas flows in our H I data and find compelling evidence at least in one case. We extend and compare our gas-SFR studies to the outer disks of galaxies, where conditions change significantly in the ISM, e.g., low metallicity and dust abundance. We focus on star formation at low-metallicity further with detailed ISM studies in dwarf galaxies, where we combine spectroscopic observations in the infrared with detailed modelling to learn about composition and detailed physical properties of the ISM. Of particular interest is the question of what drives large scale star formation in galaxies at low metallicity. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
    Astronomische Nachrichten 06/2014; 335(5). · 1.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In order to empirically determine the timescale and environmental dependence of stellar cluster disruption, we have undertaken an analysis of the unprecedented multi-pointing (seven), multi-wavelength (U, B, V, H$\alpha$, and I) Hubble Space Telescope imaging survey of the nearby, face-on spiral galaxy M83. The images are used to locate stellar clusters and stellar associations throughout the galaxy. Estimation of cluster properties (age, mass, and extinction) was done through a comparison of their spectral energy distributions with simple stellar population models. We constructed the largest catalog of stellar clusters and associations in this galaxy to-date, with ~1800 sources with masses above ~5000 M$_{\odot}$ and ages younger than ~300 Myr. In the present letter, we focus on the age distribution of the resulting clusters and associations. In particular, we explicitly test whether the age distributions are related with the ambient environment. Our results are in excellent agreement with previous studies of age distributions in the centre of the galaxy, which gives us confidence to expand out to search for similarities or differences in the other fields which sample different environments. We find that the age distribution of the clusters inside M83 varies strongly as a function of position within the galaxy, indicating a strong correlation with the galactic environment. If the age distributions are approximated as a power-law of the form $dN/dt \propto t^{\zeta}$, we find $\zeta$ values between 0 and -0.62 ( $\zeta$~-0.40 for the whole galaxy), in good agreement with previous results and theoretical predictions.
    Monthly Notices of the Royal Astronomical Society Letters 02/2014; 440(1). · 5.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of an analysis of archival 21 cm (H I) data of the blue compact dwarf galaxy Haro 11 (ESO 350-IG038). Observations were obtained at the Very Large Array, and the presence of a compact absorption feature near the optical centre of the galaxy has been detected. The central location of the absorption feature coincides with the centre of the continuum background of the galaxy, as well as with the location of knot B. The absorption feature yields an H I mass in the range of 3-10 × 108 M⊙, corresponding to spin temperatures from 91 K to 200 K, respectively. The absence of H I seen in emission places an upper limit of 1.7 × 109 M⊙ on the mass. To our knowledge this is the first example of a dwarf galaxy that shows H I absorption from its own background continuum. The continuum emission from the galaxy is also used to determine star formation rates, namely 6.85 ± 0.05 M⊙ yr-1 (for a stellar mass range of 5 M⊙ < M < 100 M⊙), or 32.8 ± 0.2 M⊙ yr-1 (for an extended range of 0.1 M⊙ < M < 100 M⊙).
    Monthly Notices of the Royal Astronomical Society 12/2013; · 5.23 Impact Factor

Full-text (2 Sources)

Available from
Jun 2, 2014