Article

# Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

Physical review D: Particles and fields 04/2010; DOI: 10.1103/PhysRevD.82.084016

Source: arXiv

- [Show abstract] [Hide abstract]

**ABSTRACT:**The formation of a naked singularity in $f(R)$ global monopole spacetime is considered in view of quantum mechanics. Quantum test fields obeying the Klein$-$Gordon, Dirac and Maxwell equations are used to probe the classical timelike naked singularity developed at $r=0$. We prove that the spatial derivative operator of the fields fails to be essentially self-adjoint. As a result, the classical timelike naked singularity formed in $f(R)$ global monopole spacetime remains quantum mechanically singular when it is probed with quantum fields having different spin structures. Pitelli and Letelier (Phys. Rev. D 80, 104035, 2009) had shown that for quantum scalar ($spin$ $0$% ) probes the general relativistic global monopole singularity remains intact. For specific modes electromagnetic ($spin$ $1$) and Dirac field ($% spin$ $1/2$) probes, however, we show that the global monopole spacetime behaves quantum mechanically regular. The admissibility of this singularity is also incorporated within the Gubser's singularity conjecture.12/2013; - [Show abstract] [Hide abstract]

**ABSTRACT:**We obtain a $2+1-$dimensional solution to gravity, coupled with nonlinear electrodynamic Lagrangian of the form of $\sqrt{\left| F_{\mu \nu}F^{\mu \nu}\right|}$. The electromagnetic field is considered with an angular component given by $F_{\mu \nu}=E_{0}\delta_{\mu}^{t}\delta_{\nu}^{\theta}$ with $E_{0}$=constant. We show that the metric coincides with the solution given by Schmidt and Singleton in PLB 721(2013)294 in $2+1-$dimensional gravity coupled with a massless, self interacting real scalar field. Finally the confining motions of massive charged as well as chargeless particles are investigated.04/2013; - [Show abstract] [Hide abstract]

**ABSTRACT:**We analyze the persistence of curvature singularities when analyzed using quantum theory. First, quantum test particles obeying the Klein-Gordon and Chandrasekhar-Dirac equation are used to probe the classical timelike naked singularity. We show that the classical singularity is felt even by our quantum probes. Next, we use loop quantization to resolve singularity hidden beneath the horizon. The singularity is resolved in this case.12/2013;

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.