Article

Gas Accretion onto a Protoplanet and Formation of a Gas Giant Planet

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 02/2010; DOI: 10.1111/j.1365-2966.2010.16527.x
Source: arXiv

ABSTRACT We investigate gas accretion onto a protoplanet, by considering the thermal effect of gas in three-dimensional hydrodynamical simulations, in which the wide region from a protoplanetary gas disk to a Jovian radius planet is resolved using the nested-grid method. We estimate the mass accretion rate and growth timescale of gas giant planets. The mass accretion rate increases with protoplanet mass for M_p < M_cri, while it becomes saturated or decreases for M_p > M_cri, where M_cri = 0.036 M_Jup (a_p/1AU)^0.75, and M_Jup and a_p are the Jovian mass and the orbital radius, respectively. The growth timescale of a gas giant planet or the timescale of the gas accretion onto the protoplanet is about 10^5 yr, that is two orders of magnitude shorter than the growth timescale of the solid core. The thermal effects barely affect the mass accretion rate because the gravitational energy dominates the thermal energy around the protoplanet. The mass accretion rate obtained in our local simulations agrees quantitatively well with those obtained in global simulations with coarser spatial resolution. The mass accretion rate is mainly determined by the protoplanet mass and the property of the protoplanetary disk. We find that the mass accretion rate is correctly calculated when the Hill or Bondi radius is sufficiently resolved. Using the oligarchic growth of protoplanets, we discuss the formation timescale of gas giant planets. Comment: Accepted for publication in MNRAS. High resolution figures are available at http://www2-tap.scphys.kyoto-u.ac.jp/~machidam/astro-ph/Planet/

0 Bookmarks
 · 
199 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HD 142527 is a young pre-main sequence star with properties indicative of the presence of a giant planet or/and a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the SED fitting, the distance to the star (140 +- 20 pc) and the use of evolutionary tracks and isochrones, lead to the following set of parameters T_eff = 6550 +- 100 K, log g = 3.75 +- 0.10, L_*/L_sun = 16.3 +- 4.5, M_*/M_sun = 2.0 +- 0.3 and an age of 5.0 +- 1.5 Myr. This stellar age provides further constrains to the mass of the possible companion estimated by Biller et al. (2012), being in-between 0.20 and 0.35 M_sun. Stellar accretion rates obtained from UV Balmer excess modelling, optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent to each other. The mean value from all previous tracers is 2 (+- 1) x 10^-7 M_sun yr^-1, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al. (2013). This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in-between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ~ 7 on a timescale of 2-5 years.
    The Astrophysical Journal 05/2014; 790(1). DOI:10.1088/0004-637X/790/1/21 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The regular satellites found around Neptune ($\approx 17~M_{\Earth}$) and Uranus ($\approx 14.5~M_{\Earth}$) suggest that past gaseous circumplanetary disks may have co-existed with solids around sub-Neptune-mass protoplanets ($< 17~M_{\Earth}$). These disks have been shown to be cool, optically thin, quiescent, with low surface density and low viscosity. Numerical studies of the formation are difficult and technically challenging. As an introductory attempt, three-dimensional global simulations are performed to explore the formation of circumplanetary disks around sub-Neptune-mass protoplanets embedded within an isothermal protoplanetary disk at the inviscid limit of the fluid in the absence of self-gravity. Under such conditions, a sub-Neptune-mass protoplanet can reasonably have a rotationally supported circumplanetary disk. The size of the circumplanetary disk is found to be roughly one-tenth of the corresponding Hill radius, which is consistent with the orbital radii of irregular satellites found for Uranus. The protoplanetary gas accretes onto the circumplanetary disk vertically from high altitude and returns to the protoplanetary disk again near the midplane. This implies an open system in which the circumplanetary disk constantly exchanges angular momentum and material with its surrounding prenatal protoplanetary gas.
    The Astrophysical Journal 06/2014; 790(1). DOI:10.1088/0004-637X/790/1/32 · 6.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the formation of multiple-planet systems in the presence of a hot Jupiter using extended N-body simulations that are performed simultaneously with semi-analytic calculations. Our primary aims are to describe the planet formation process starting from planetesimals using high-resolution simulations, and to examine the dependences of the architecture of planetary systems on input parameters (e.g., disk mass, disk viscosity). We observe that protoplanets that arise from oligarchic growth and undergo type I migration stop migrating when they join a chain of resonant planets outside the orbit of a hot Jupiter. The formation of a resonant chain is almost independent of our model parameters, and is thus a robust process. At the end of our simulations, several terrestrial planets remain at around 0.1 AU. The formed planets are not equal-mass; the largest planet constitutes more than 50 percent of the total mass in the close-in region, which is also less dependent on parameters. In the previous work of this paper (Ogihara et al. 2013), we have found a new physical mechanism of induced migration of the hot Jupiter, which is called a crowding-out. If the hot Jupiter opens up a wide gap in the disk (e.g., owing to low disk viscosity), crowding-out becomes less efficient and the hot Jupiter remains. We also discuss angular momentum transfer between the planets and disk.
    The Astrophysical Journal 04/2014; 787(2). DOI:10.1088/0004-637X/787/2/172 · 6.28 Impact Factor

Preview

Download
0 Downloads
Available from

Shu-ichiro Inutsuka