Article

A Representation of Quantum Measurement in Order-Unit Spaces

Foundations of Physics (Impact Factor: 1.17). 01/2010; DOI: 10.1007/s10701-008-9236-y
Source: arXiv

ABSTRACT A certain generalization of the mathematical formalism of quantum mechanics beyond operator algebras is considered. The approach is based on the concept of conditional probability and the interpretation of the Lueders - von Neumann quantum measurement as a probability conditionalization rule. A major result shows that the operator algebras must be replaced by order-unit spaces with some specific properties in the generalized approach, and it is analyzed under which conditions these order-unit spaces become Jordan algebras. An application of this result provides a characterization of the projection lattices in operator algebras. Comment: 12 pages, the original publication is available at htt://www.springerlink.com

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Starting from an abstract setting for the Lueders - von Neumann quantum measurement process and its interpretation as a probability conditionalization rule in a non-Boolean event structure, the author derived a certain generalization of operator algebras in a preceding paper. This is an order-unit space with some specific properties. It becomes a Jordan operator algebra under a certain set of additional conditions, but does not own a multiplication operation in the most general case. A major objective of the present paper is the search for such examples of the structure mentioned above that do not stem from Jordan operator algebras; first natural candidates are matrix algebras over the octonions and other nonassociative rings. Therefore, the case when a nonassociative commutative multiplication exists is studied without assuming that it satisfies the Jordan condition. The characteristics of the resulting algebra are analyzed. This includes the uniqueness of the spectral resolution as well as a criterion for its existence, subalgebras that are Jordan algebras, associative subalgebras, and more different levels of compatibility than occurring in standard quantum mechanics. However, the paper cannot provide the desired example, but contribute to the search by the identification of some typical differences between the potential examples and the Jordan operator algebras and by negative results concerning some first natural candidates. The possibility that no such example exists cannot be ruled out. However, this would result in an unexpected new characterization of Jordan operator algebras, which would have a significant impact on quantum axiomatics since some customary axioms (e.g., powerassociativity or the sum postulate for observables) might turn out to be redundant then. Comment: 14 pages, the original publication is available at http://www.springerlink.com
    Foundations of Physics 02/2010; · 1.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the quantum mechanical Hilbert space formalism, the probabilistic interpretation is a later ad-hoc add-on, more or less enforced by the experimental evidence, but not motivated by the mathematical model itself. A model involving a clear probabilistic interpretation from the very beginning is provided by the quantum logics with unique conditional probabilities. It includes the projection lattices in von Neumann algebras and here probability conditionalization becomes identical with the state transition of the Lueders - von Neumann measurement process. This motivates the definition of a hierarchy of five compatibility and comeasurability levels in the abstract setting of the quantum logics with unique conditional probabilities. Their meanings are: the absence of quantum interference or influence, the existence of a joint distribution, simultaneous measurability, and the independence of the final state after two successive measurements from the sequential order of these two measurements. A further level means that two elements of the quantum logic (events) belong to the same Boolean subalgebra. In the general case, the five compatibility and comeasurability levels appear to differ, but they all coincide in the common Hilbert space formalism of quantum mechanics, in von Neumann algebras, and in some other cases. Comment: 12 pages
    Communications in Theoretical Physics 01/2010; · 0.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An interesting link between two very different physical aspects of quantum mechanics is revealed; these are the absence of third-order interference and Tsirelson's bound for the nonlocal correlations. Considering multiple-slit experiments - not only the traditional configuration with two slits, but also configurations with three and more slits - Sorkin detected that third-order (and higher-order) interference is not possible in quantum mechanics. The EPR experiments show that quantum mechanics involves nonlocal correlations which are demonstrated in a violation of the Bell or CHSH inequality, but are still limited by a bound discovered by Tsirelson. It now turns out that Tsirelson's bound holds in a broad class of probabilistic theories provided that they rule out third-order interference. A major characteristic of this class is the existence of a reasonable calculus of conditional probability or, phrased more physically, of a reasonable model for the quantum measurement process.
    Foundations of Physics 04/2011; 43(6). · 1.17 Impact Factor

Full-text

View
1 Download
Available from