Article

MgO barrier-perpendicular magnetic tunnel junctions with CoFe/Pd multilayers and ferromagnetic insertion layers

Applied Physics Letters (Impact Factor: 3.52). 10/2009; DOI: 10.1063/1.3265740
Source: arXiv

ABSTRACT The authors studied an effect of ferromagnetic (Co20Fe60B20 or Fe) layer insertion on tunnel magnetoresistance (TMR) properties of MgO-barrier magnetic tunnel junctions (MTJs) with CoFe/Pd multilayer electrodes. TMR ratio in MTJs with CoFeB/MgO/Fe stack reached 67% at an-nealing temperature (Ta) of 200 degree C and then decreased rapidly at Ta over 250 degree C. The degradation of the TMR ratio may be related to crystallization of CoFe(B) into fcc(111) or bcc(011) texture result-ing from diffusion of B into Pd layers. MTJs which were in-situ annealed at 350oC just after depo-siting bottom CoFe/Pd multilayer showed TMR ratio of 78% by post annealing at Ta =200 degree C. Comment: 12 pages, 4 figures

0 Bookmarks
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A series of MgO perpendicular magnetic tunneling junction (p-MTJ) films with soft/hard composite electrodes is prepared by RF-sputtering, where amorphous CoFeB is chosen as soft layer. The modulation of MTJs film magnetic properties on CoFeB thickness is investigated. The critical thickness for composite free layer transform from rigid magnet (RM) to exchange spring system (ES) is indentified. Besides, an unexpected in-plane exchange bias is observed which is attributed to the formation of closure domains. The evolution of domain structures on CoFeB is examined by magnetic force microscope. Coexistence of two distinguished magnetic domains of different sizes is observed. It is found that the evolution of domain morphology as varying CoFeB thickness is due to the modulation of effective anisotropy.
    IEEE Transactions on Magnetics 11/2012; 48(11):2812-2815. · 1.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have investigated the effect of an ultra-thin Ta insertion in the CoFeB (CoFeB/Ta/CoFeB) free layer (FL) on magnetic and tunneling magnetoresistance (TMR) properties of a CoFeB-MgO system with perpendicular magnetic anisotropy (PMA). It is found that the critical thickness (tc) to sustain PMA is doubled (tc = 2.6 nm) in Ta-inserted CoFeB FL as compared to single CoFeB layer (tc = 1.3 nm). While the effective magnetic anisotropy is found to increase with Ta insertion, the saturation magnetization showed a slight reduction. As the CoFeB thickness increasing, the thermal stability of Ta inserted structure is significantly increased by a factor of 2.5 for total CoFeB thickness less than 2 nm. We have observed a reasonable value of TMR for a much thicker CoFeB FL (thickness = 2-2.6 nm) with Ta insertion, and without significant increment in resistance-area product. Our results reveal that an ultra-thin Ta insertion in CoFeB might pay the way towards developing the high-density memory devices with enhanced thermal stability.
    AIP Advances. 12/2012; 2(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Junction size (D) dependence of thermal stability (Δ) factor and intrinsic critical current (IC0) were investigated for MgO/CoFeB/Ta/CoFeB/MgO recording structure in magnetic tunnel junctions (MTJs) having a CoFeB reference layer and a synthetic ferrimagnetic (SyF) reference layer. Δ of the recording structure shows almost constant value down to 40 nm, whereas IC0 shows a linear dependence on the recording layer area, as similarly observed in recording structure with single-interface. Average absolute intrinsic critical current density is 3.5 MA/cm2, which is comparable to previously reported value for recording structure with single-interface. A MgO/CoFeB(1.4)/Ta(0.4)/CoFeB(1.0)/MgO double-interface recording structure in MTJ with SyF reference layer shows Δ of 59 at D = 29 nm.
    IEEE Transactions on Magnetics 07/2013; 49(7):4437-4440. · 1.42 Impact Factor

Full-text (2 Sources)

View
35 Downloads
Available from
May 19, 2014