Article

The High Energy Telescope on EXIST

Proc SPIE 09/2009; DOI: 10.1117/12.826540
Source: arXiv

ABSTRACT The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed next generation multi-wavelength survey mission. The primary instrument is a High Energy telescope (HET) that conducts the deepest survey for Gamma-ray Bursts (GRBs), obscured-accreting and dormant Supermassive Black Holes and Transients of all varieties for immediate followup studies by the two secondary instruments: a Soft X-ray Imager (SXI) and an Optical/Infrared Telescope (IRT). EXIST will explore the early Universe using high redshift GRBs as cosmic probes and survey black holes on all scales. The HET is a coded aperture telescope employing a large array of imaging CZT detectors (4.5 m^2, 0.6 mm pixel) and a hybrid Tungsten mask. We review the current HET concept which follows an intensive design revision by the HET imaging working group and the recent engineering studies in the Instrument and Mission Design Lab at the Goddard Space Flight Center. The HET will locate GRBs and transients quickly (<10-30 sec) and accurately (< 20") for rapid (< 1-3 min) onboard followup soft X-ray and optical/IR (0.3-2.2 micron) imaging and spectroscopy. The broad energy band (5-600 keV) and the wide field of view (~90 deg x 70 deg at 10% coding fraction) are optimal for capturing GRBs, obscured AGNs and rare transients. The continuous scan of the entire sky every 3 hours will establish a finely-sampled long-term history of many X-ray sources, opening up new possibilities for variability studies. Comment: 10 pages, 6 figures, 3 tables, SPIE conference proceedings (UV, X-ray, and Gamma-Ray Space Instrumentation for Astronomy XVI, 7435-9)

0 Bookmarks
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: {\it ProtoEXIST1} is a pathfinder for the {\it EXIST-HET}, a coded aperture hard X-ray telescope with a 4.5 m$^2$ CZT detector plane a 90$\times$70 degree field of view to be flown as the primary instrument on the {\it EXIST} mission and is intended to monitor the full sky every 3 h in an effort to locate GRBs and other high energy transients. {\it ProtoEXIST1} consists of a 256 cm$^2$ tiled CZT detector plane containing 4096 pixels composed of an 8$\times$8 array of individual 1.95 cm $\times$ 1.95 cm $\times$ 0.5 cm CZT detector modules each with a 8 $\times$ 8 pixilated anode configured as a coded aperture telescope with a fully coded $10^\circ\times10^\circ$ field of view employing passive side shielding and an active CsI anti-coincidence rear shield, recently completed its maiden flight out of Ft. Sumner, NM on the 9th of October 2009. During the duration of its 6 hour flight on-board calibration of the detector plane was carried out utilizing a single tagged 198.8 nCi Am-241 source along with the simultaneous measurement of the background spectrum and an observation of Cygnus X-1. Here we recount the events of the flight and report on the detector performance in a near space environment. We also briefly discuss {\it ProtoEXIST2}: the next stage of detector development which employs the {\it NuSTAR} ASIC enabling finer (32$\times$32) anode pixilation. When completed {\it ProtoEXIST2} will consist of a 256 cm$^2$ tiled array and be flown simultaneously with the ProtoEXIST1 telescope.
    Proc SPIE 09/2010;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hard X-ray sky now being studied by INTEGRAL and Swift and soon by NuSTAR is rich with energetic phenomena and highly variable non-thermal phenomena on a broad range of timescales. The High Energy Telescope (HET) on the proposed Energetic X-ray Imaging Survey Telescope (EXIST) mission will repeatedly survey the full sky for rare and luminous hard X-ray phenomena at unprecedented sensitivities. It will detect and localize (<20", at 5 sigma threshold) X-ray sources quickly for immediate followup identification by two other onboard telescopes - the Soft X-ray imager (SXI) and Optical/Infrared Telescope (IRT). The large array (4.5 m^2) of imaging (0.6 mm pixel) CZT detectors in the HET, a coded-aperture telescope, will provide unprecedented high sensitivity (~0.06 mCrab Full Sky in a 2 year continuous scanning survey) in the 5 - 600 keV band. The large field of view (90 deg x 70 deg) and zenith scanning with alternating-orbital nodding motion planned for the first 2 years of the mission will enable nearly continuous monitoring of the full sky. A 3y followup pointed mission phase provides deep UV-Optical-IR-Soft X-ray and Hard X-ray imaging and spectroscopy for thousands of sources discovered in the Survey. We review the HET design concept and report the recent progress of the CZT detector development, which is underway through a series of balloon-borne wide-field hard X-ray telescope experiments, ProtoEXIST. We carried out a successful flight of the first generation of fine pixel large area CZT detectors (ProtoEXIST1) on Oct 9, 2009. We also summarize our future plan (ProtoEXIST2 & 3) for the technology development needed for the HET. Comment: 10 pages, 13 figures, 2 tables, SPIE Conference "Astronomical Telescopes and Instrumentation 2010"; to appear in Proceedings SPIE (2010)
    Proc SPIE 09/2010;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent numerical simulations suggest that Population III (Pop III) stars were born with masses not larger than {approx}100 M {sub Sun} and typically {approx}40 M {sub Sun }. By self-consistently considering the jet generation and propagation in the envelope of these low-mass Pop III stars, we find that a Pop III blue supergiant star has the possibility of giving rise to a gamma-ray burst (GRB) even though it keeps a massive hydrogen envelope. We evaluate observational characteristics of Pop III GRBs and predict that Pop III GRBs have a duration of {approx}10{sup 5} s in the observer frame and a peak luminosity of {approx}5 Multiplication-Sign 10{sup 50} erg s{sup -1}. Assuming that the E {sub p}-L {sub p} (or E {sub p}-E {sub {gamma},iso}) correlation holds for Pop III GRBs, we find that the spectrum peak energy falls at approximately a few keV (or {approx}100 keV) in the observer frame. We discuss the detectability of Pop III GRBs by future satellite missions such as EXIST and Lobster. If the E {sub p}-E {sub {gamma},iso} correlation holds, we have the possibility to detect Pop III GRBs at z {approx} 9 as long-duration X-ray-rich GRBs by EXIST. Conversely, if the E {sub p}-L {sub p} correlation holds, we have the possibility to detect Pop III GRBs up to z {approx} 19 as long-duration X-ray flashes by Lobster.
    The Astrophysical Journal 11/2012; 759(2). · 6.73 Impact Factor

Full-text (2 Sources)

View
21 Downloads
Available from
May 16, 2014