The interactions of winds from massive young stellar objects: X-ray emission, dynamics, and cavity evolution

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.23). 08/2009; DOI: 10.1111/j.1365-2966.2009.15504.x
Source: arXiv

ABSTRACT 2D axis-symmetric hydrodynamical simulations are presented which explore the interaction of stellar and disk winds with surrounding infalling cloud material. The star, and its accompanying disk, blow winds inside a cavity cleared out by an earlier jet. The collision of the winds with their surroundings generates shock heated plasma which reaches temperatures up to ~10^8 K. Attenuated X-ray spectra are calculated from solving the equation of radiative transfer along lines-of-sight. This process is repeated at various epochs throughout the simulations to examine the evolution of the intrinsic and attenuated flux. We find that the dynamic nature of the wind-cavity interaction fuels intrinsic variability in the observed emission on timescales of several hundred years. This is principally due to variations in the position of the reverse shock which is influenced by changes in the shape of the cavity wall. The collision of the winds with the cavity wall can cause clumps of cloud material to be stripped away. Mixing of these clumps into the winds mass-loads the flow and enhances the X-ray emission measure. The position and shape of the reverse shock plays a key role in determining the strength and hardness of the X-ray emission. In some models the reverse shock is oblique to much of the stellar and disk outflows, whereas in others it is closely normal over a wide range of polar angles. For reasonable stellar and disk wind parameters the integrated count rate and spatial extent of the intensity peak for X-ray emission agree with \textit{Chandra} observations of the deeply embedded MYSOs S106 IRS4, Mon R2 IRS3 A, and AFGL 2591.(abridged) Comment: 19 pages, 14 figures, accepted for publication in MNRAS

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: We study the problem of a stellar wind bowshock (produced by an isotropic wind/plane flowing environment interaction) that lies within the wind acceleration region in the simple, ram-pressure balance approximation. We show that this problem has a simple, approximate analytic solution that produces reasonably accurate results when applied to wind velocity profiles appropriate for radiatively driven winds. These solutions should be useful for initializing numerical simulations and for evaluating whether or not the simulations are giving physically reasonable solutions. Also, our analytic solutions should be useful in the interpretation of observations without the necessity of having to perform complex numerical simulations.
    Monthly Notices of the Royal Astronomical Society 08/2014; 443(4):3284-3288. DOI:10.1093/mnras/stu1265 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Investigating the outflows emanating from young stellar objects (YSOs) on sub-arcsecond scales provides important clues to the nature of the underlying accretion-ejection process occurring near the central protostar. We have investigated the structures and kinematics of the outflows driven by the YSO DG Tauri, using the Near-infrared Integral Field Spectrograph (NIFS) on Gemini North. The blueshifted outflow shows two distinct components in [Fe II] 1.644 micron emission, which are separated using multi-component line fitting. A stationary recollimation shock is observed, in agreement with previous X-ray and FUV observations. The presence of this shock indicates that the innermost streamlines of the high-velocity component are launched at a very small radius, 0.01-0.15 AU, from the central star. The jet accelerates and expands downstream of the recollimation shock; the 'acceleration' is likely a sign of velocity variations in the jet. No evidence of rotation is found, and we compare this non-detection to previous counter-claims. Moving jet knots, likely the result of the jet velocity variations, are observed. One of these knots moves more slowly than previously observed knots, and the knot ejection interval appears to be non-periodic. An intermediate-velocity component surrounds this central jet, and is interpreted as the result of a turbulent mixing layer along the jet boundaries. Such lateral entrainment requires the presence of a magnetic field of strength a few mG or less at hundreds of AU above the disc surface, which is argued to be a reasonable proposition. In H2 1-0 S(1) 2.1218 micron emission, a wide-angle, intermediate-velocity blueshifted outflow is observed. Both outflows are consistent with being launched by a magnetocentrifugal disc wind, although an X-wind origin for the high-velocity jet cannot be ruled out.
    Monthly Notices of the Royal Astronomical Society 04/2014; 441(2). DOI:10.1093/mnras/stu654 · 5.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present high-resolution 1.3 mm continuum observations of the massive young stellar object S140-IRS1. S140-IRS1 is a disc wind prototype with elongated radio emission (PA ˜ 45°) perpendicular to the large-scale CO outflow in the region. The observations taken with the CARMA B array and the Submillimetre Array (SMA) compact configuration correspond to a spatial resolution of 0.3 and 3.0 arcsec, respectively. Complementary 2.7 and 3.5 mm data taken with OVRO in a compact configuration are also discussed. The deconvolved position angle for S140-IRS1 of 37° ±15° is compatible with a disc perpendicular to the main CO outflow and near-infrared monopolar reflection nebula. We have utilized two-dimensional axisymmetric radiative transfer modelling to interpret the millimetre wave emission from S140-IRS1. The model required the addition of a disc component, as the observed image, flux and visibilities cannot be represented solely by a dusty envelope with polar cavities. We report that the high-resolution image of S140-IRS1 is consistent with the interpretation of emission from a dust disc in a large-scale envelope with cleared bipolar cavities. Strong continuum emission is also detected in both SMA and OVRO maps from the previously discovered submillimetre source S140-SMM1 and from the infrared source S140-IRS3. Furthermore, S140-SMM1 is identified with maser sources whose proper motions are consistent with being the source of the outflow with position angle ˜20° previously associated by some authors with a second outflow created by S140-IRS1. Our findings are consistent with a disc wind interpretation of the radio emission for S140-IRS1 rather than that of a jet.
    Monthly Notices of the Royal Astronomical Society 01/2013; 428(1):609-624. DOI:10.1093/mnras/sts049 · 5.23 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014