Article

SVOM: a new mission for Gamma-Ray Burst Studies

06/2009; DOI: 10.1063/1.3155898
Source: arXiv

ABSTRACT We present the SVOM (Space-based multi-band astronomical Variable Object Monitor) mission, that is being developed in cooperation between the Chinese National Space Agency (CNSA), the Chinese Academy of Science (CAS) and the French Space Agency (CNES). Its scientific objectives include the study of the GRB phenomenon, GRB physics and progenitors, cosmology, and fundamental physics. SVOM is designed to detect all known types of Gamma-Ray Bursts (GRBs), to provide fast and reliable GRB positions, to measure the broadband spectral characteristics and temporal properties of the GRB prompt emission. This will be obtained in first place thanks to a set of four space flown instruments. A wide field (~2 sr) coded mask telescope (ECLAIRs), operating in the 4-250 keV energy range, will provide the triggers and localizations, while a gamma-ray non-imaging spectrometer (GRM), sensitive in the 50 keV-5 MeV domain, will extend the prompt emission energy coverage. After a satellite slew, in order to place the GRB direction within field of view of the two narrow field instruments - a soft X-ray (XIAO), and a visible telescope (VT) - the GRB position will be refined and the study of the early phases of the GRB afterglow will be possible. A set of three ground based dedicated instruments, two robotic telescopes (GFTs) and a wide angle optical monitor (GWAC), will complement the space borne instruments. Thanks to the low energy trigger threshold (~4 keV) of the ECLAIRs, SVOM is ideally suited for the detection of soft, hence potentially most distant, GRBs. Its observing strategy is optimized to facilitate follow-up observations from the largest ground based facilities. Comment: Proceedings of the 6th Huntsville Symposium on Gamma-Ray Bursts (October 20-23 2008). Figures in colour with respect to the published version

0 Followers
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Liverpool Telescope is one of the world's premier facilities for time domain astronomy. The time domain landscape is set to radically change in the coming decade, with synoptic all-sky surveys such as LSST providing huge numbers of transient detections on a nightly basis; transient detections across the electromagnetic spectrum from other major facilities such as SVOM, SKA and CTA; and the era of `multi-messenger astronomy', wherein astrophysical events are detected via non-electromagnetic means, such as neutrino or gravitational wave emission. We describe here our plans for the Liverpool Telescope 2: a new robotic telescope designed to capitalise on this new era of time domain astronomy. LT2 will be a 4-metre class facility co-located with the Liverpool Telescope at the Observatorio del Roque de Los Muchachos on the Canary island of La Palma. The telescope will be designed for extremely rapid response: the aim is that the telescope will take data within 30 seconds of the receipt of a trigger from another facility. This will make it a world-leading facility for the study of fast fading transients, and explosive phenomena discovered at early times. The telescope will have a diverse instrument suite which is simultaneously mounted for automatic changes, but it is envisaged that the primary instrument will be an intermediate resolution, optical/infrared spectrograph for scientific exploitation of transients discovered with the next generation of synoptic survey facilities. In this paper we outline the core science drivers for the telescope, and the requirements for the optical and mechanical design.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The first gravitational-wave (GW) observations will greatly benefit, or even depend on, the detection of coincident electromagnetic counterparts. These counterparts will similarly enhance the scientific impact of later detections. Electromagnetic follow-ups can be, nevertheless, challenging for GW event candidates with poorly reconstructed directions. Localization can be inefficient in several important scenarios: (i) in the early advanced detector era, only the two LIGO observatories will be operating; (ii) later, even with more observatories, the detectors' sensitivity will probably be non-uniform; (iii) the first events, as well as a significant fraction of later events, will likely occur near the detectors' horizon distance, where they are only marginally detectable, having low signal-to-noise ratios. In these scenarios, the precision of localization can be severely limited. Follow-up observations will need to cover hundreds to thousands of square degrees of the sky over a limited period of time, reducing the list of suitable follow-up telescopes or telescope networks. Compact binary mergers, the most anticipated sources for the first GW observations, will be detectable via advanced LIGO/Virgo from hundreds of megaparsecs, setting the scale to the sensitivity required from follow-up observatories. We demonstrate that the Cherenkov Telescope Array will be capable of following up GW event candidates over the required large sky area with sufficient sensitivity to detect short gamma-ray bursts, which are thought to originate from compact binary mergers, out to the horizon distance of advanced LIGO/Virgo. CTA can therefore be invaluable starting with the first multimessenger detections, even with poorly reconstructed GW source directions. This scenario also provides a further scientific incentive for GW observatories to further decrease the delay of their event reconstruction.
    Monthly Notices of the Royal Astronomical Society 03/2014; 443(1). DOI:10.1093/mnras/stu1205 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The robotic 2m Liverpool Telescope, based on the Canary island of La Palma, has a diverse instrument suite and a strong track record in time domain science, with highlights including early time photometry and spectra of supernovae, measurements of the polarization of gamma-ray burst afterglows, and high cadence light curves of transiting extrasolar planets. In the next decade the time domain will become an increasingly prominent part of the astronomical agenda with new facilities such as LSST, SKA, CTA and Gaia, and promised detections of astrophysical gravitational wave and neutrino sources opening new windows on the transient universe. To capitalise on this exciting new era we intend to build Liverpool Telescope 2: a new robotic facility on La Palma dedicated to time domain science. The next generation of survey facilities will discover large numbers of new transient sources, but there will be a pressing need for follow-up observations for scientific exploitation, in particular spectroscopic follow-up. Liverpool Telescope 2 will have a 4-metre aperture, enabling optical/infrared spectroscopy of faint objects. Robotic telescopes are capable of rapid reaction to unpredictable phenomena, and for fast-fading transients like gamma-ray burst afterglows. This rapid reaction enables observations which would be impossible on less agile telescopes of much larger aperture. We intend Liverpool Telescope 2 to have a world-leading response time, with the aim that we will be taking data with a few tens of seconds of receipt of a trigger from a ground- or space-based transient detection facility. We outline here our scientific goals and present the results of our preliminary optical design studies.

Full-text (2 Sources)

Download
100 Downloads
Available from
May 29, 2014