Article

Spitzer/IRS 5-35 um Low-Resolution Spectroscopy of the 12 um Seyfert Sample

The Astrophysical Journal (Impact Factor: 6.28). 06/2009; DOI: 10.1088/0004-637X/701/1/658
Source: arXiv

ABSTRACT We present low-resolution 5.5-35 um spectra for 103 galaxies from the 12 um Seyfert sample, a complete unbiased 12 um flux limited sample of local Seyfert galaxies selected from the IRAS Faint Source Catalog, obtained with the Infrared Spectrograph (IRS) on-board Spitzer Space Telescope. For 70 of the sources observed in the IRS mapping mode, uniformly extracted nuclear spectra are presented for the first time. We performed an analysis of the continuum emission, the strength of the Polycyclic Aromatic Hydrocarbon (PAH) and astronomical silicate features of the sources. We find that on average, the 15-30 um slope of the continuum is alpha_{15-30}=-0.85+-0.61 for Seyfert 1s and -1.53+-0.84 for Seyfert 2s, and there is substantial scatter in each type. Moreover, nearly 32% of Seyfert 1s, and 9% of Seyfert 2s, display a peak in the mid-infrared spectrum at 20 um, which is attributed to an additional hot dust component. The PAH equivalent width decreases with increasing dust temperature, asindicated by the global infrared color of the host galaxies. However, no statistical difference in PAH equivalent width is detected between the two Seyfert types, 1 and 2, of the same bolometric luminosity. The silicate features at 9.7 and 18um in Seyfert 1 galaxies are rather weak, while Seyfert 2s are more likely to display strong silicate absorption. Those Seyfert 2s with the highest silicate absorption also have high infrared luminosity and high absorption (hydrogen column density N_H>10^23 cm^-2 as measured from the X-rays. Finally, we propose a new method to estimate the AGN contribution to the integrated 12 um galaxy emission, by subtracting the "star formation" component in the Seyfert galaxies, making use of the tight correlation between PAH 11.2 um luminosity and 12 um luminosity for star forming galaxies. Comment: accepted for publication in ApJ

Full-text

Available from: Vassilis Charmandaris, Apr 18, 2015
0 Followers
 · 
90 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Gran Telescopio CANARIAS CanariCam 8.7$\mu$m imaging and 7.5-13$\mu$m spectroscopy of six local systems known to host an active galactic nucleus (AGN) and have nuclear star formation. Our main goal is to investigate whether the molecules responsible for the 11.3$\mu$m polyclyclic aromatic hydrocarbon (PAH) feature are destroyed in the close vicinity of an AGN. We detect 11.3$\mu$m PAH feature emission in the nuclear regions of the galaxies as well as extended PAH emission over a few hundred parsecs. The equivalent width (EW) of the feature shows a minimum at the nucleus but increases with increasing radial distances, reaching typical star-forming values a few hundred parsecs away from the nucleus. The reduced nuclear EW are interpreted as due to increased dilution from the AGN continuum rather than destruction of the PAH molecules. We conclude that at least those molecules responsible for the 11.3$\mu$m PAH feature survive in the nuclear environments as close as 10pc from the AGN and for Seyfert-like AGN luminosities. We propose that material in the dusty tori, nuclear gas disks, and/or host galaxies of AGN is likely to provide the column densities necessary to protect the PAH molecules from the AGN radiation field.
    Monthly Notices of the Royal Astronomical Society 07/2014; 443(3). DOI:10.1093/mnras/stu1293 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mid-infrared (MIR) spectra observed with Gemini/Michelle have been used to study the nuclear region of the Compton-thick type 2 Seyfert galaxy, Markarian 3 (Mrk 3), at a spatial resolution of ̃200 pc. No polycyclic aromatic hydrocarbon emission bands were detected in the N-band spectrum of Mrk 3. However, intense [Ar III] 8.99 μm, [S IV] 10.5 μm and [Ne II] 12.8 μm ionic emission lines, as well as a silicate absorption feature at 9.7 μm, have been found in the nuclear extraction (̃200 pc). We also present a subarcsecond-resolution Michelle N-band image of Mrk 3, which resolves its circumnuclear region. This diffuse MIR emission shows up as a wing towards the east-west direction, closely aligned with the S-shape of the narrow-line region observed in the optical [O III] λ5007Å image from the Faint Object Camera onboard the Hubble Space Telescope. The nuclear continuum spectrum can be well represented by a theoretical torus spectral energy distribution, suggesting that the nucleus of Mrk 3 might host a dusty toroidal structure, as predicted by the unified model of an active galactic nucleus (AGN). In addition, the hydrogen column density (N_H= 4.8^{+3.3}_{-3.1}× 10^{23} cm-2) estimated with a torus model for Mrk 3 is consistent with the value derived from X-ray spectroscopy. The torus model geometry of Mrk 3 is similar to that of NGC 3281 (both are Compton-thick galaxies), confirmed through fitting the 9.7-μm silicate band profile. These results might provide further evidence that silicate-rich dust can be associated with the AGN torus and might also be responsible for the absorption observed at X-ray wavelengths in those galaxies.
    Monthly Notices of the Royal Astronomical Society 05/2014; 441(1). DOI:10.1093/mnras/stu468 · 5.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We simultaneously analyze the spectral line energy distributions (SLEDs) of CO and H2 of six local luminous infrared (IR) Seyfert galaxies. For the CO SLEDs, we used new Herschel/SPIRE FTS data (from J=4-3 to J=13-12) and ground-based observations for the lower-J CO transitions. The H2 SLEDs were constructed using archival mid-IR Spitzer/IRS and near-IR VLT/SINFONI data for the rotational and ro-vibrational H2 transitions, respectively. In total, the SLEDs contain 26 transitions with upper level energies between 5 and 15000 K. A single, constant density, model (n$_{H_2}$ ~ 10$^{4.5-6}$ cm$^{-3}$) with a broken power-law temperature distribution reproduces well both the CO and H2 SLEDs. The power-law indices are $\beta_1$ ~ 1-3 for warm molecular gas (20 K < T < 100 K) and $\beta_2$ ~ 4-5 for hot molecular gas (T > 100 K). We show that the steeper temperature distribution (higher $\beta$) for hot molecular gas can be explained by shocks and photodissociation region (PDR) models, however, the exact $\beta$ values are not reproduced by PDR or shock models alone and a combination of both is needed. We find that the three major mergers among our targets have shallower temperature distributions for warm molecular gas than the other three spiral galaxies. This can be explained by a higher relative contribution of shock excitation, with respect to PDR excitation, for the warm molecular gas in these mergers. For only one of the mergers, IRASF 05189-2524, the shallower H2 temperature distribution differs from that of the spiral galaxies. The presence of a bright active galactic nucleus in this source might explain the warmer molecular gas observed.
    Astronomy and Astrophysics 04/2014; 566. DOI:10.1051/0004-6361/201423430 · 4.48 Impact Factor

Similar Publications