Sunspot seismic halos generated by fast MHD wave refraction

Astronomy and Astrophysics (Impact Factor: 4.48). 05/2009; DOI: 10.1051/0004-6361/200913030
Source: arXiv

ABSTRACT We suggest an explanation for the high-frequency power excess surrounding active regions known as seismic halos. The idea is based on numerical simulations of magneto-acoustic waves propagation in sunspots. We propose that such an excess can be caused by the additional energy injected by fast mode waves refracted in the higher atmosphere due to the rapid increase of the Alfven speed. Our model qualitatively explains the magnitude of the halo and allows to make some predictions of its behavior that can be checked in future observations. Comment: Accepted by Astronomy and Astrophysics Letters

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments onboard the Solar Dynamics Observatory satellite produce Doppler velocity and continuum intensity at 6173 Å as well as intensity maps at 1600 Å and 1700 Å, which can be used for helioseismic studies at different heights in the solar photosphere. We perform a Hankel–Fourier analysis in an annulus centered around sunspots or quiet-Sun regions, to estimate the change in power of waves crossing these regions of interest. We find that there is a dependence of power-reduction coefficients α on measurement height in the photosphere: Sunspots reduce the power of outgoing waves with frequencies ν lower than ν≈4.5 mHz at all heights, but enhance the power of acoustic waves in the range ν≈4.5 – 5.5 mHz toward chromospheric heights, which is likely the signature of acoustic glories (halos). Maximum power reduction seems to occur near the continuum level and to decrease with altitude. Sunspots also impact the frequencies of outgoing waves in an altitude-dependent fashion. The quiet Sun is shown to behave like a strong power reducer for outgoing f- and p-modes at the continuum level, with a power reduction α≈15 – 20 %, and like a weak power enhancer for p-modes higher in the atmosphere. It is speculated that the surprising power reduction at the continuum level is related to granulation. In Doppler-velocity data, and unlike in intensity data, the quiet Sun behaves like a strong power reducer for granular flows.
    Solar Physics 11/2012; 282(1). · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this article, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out a helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by Gizon et al. (2009a, 2009b). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.
    Solar Physics 11/2010; 267(1):1-62. · 3.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study properties of waves of frequencies above the photospheric acoustic cut-off of $\approx$5.3 mHz, around four active regions, through spatial maps of their power estimated using data from Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard Solar Dynamics Observatory (SDO). The wavelength channels 1600 {\AA} and 1700 {\AA} from AIA are now known to capture clear oscillation signals due to helioseismic p modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so called 'acoustic halos' seen around active regions, as a function of wave frequencies, inclination and strength of magnetic field (derived from the vector field observations by HMI) and observation height. We infer possible signatures of (magneto-)acoustic wave refraction from the observation height dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p mode absorption and mode conversions by the magnetic field.
    Solar Physics 06/2012; · 3.81 Impact Factor


Available from