Measurement of the double beta decay half-life of Nd-150 and search for neutrinoless decay modes with the NEMO-3 detector

Source: arXiv

ABSTRACT The half-life for two-neutrino double beta decay of Nd-150 has been measured with data taken by the NEMO 3 experiment at the Modane Underground Laboratory. The limits are also set on the half-life of different neutrinoless double beta decay of this isotope. Comment: PhD thesis, the University of Manchester

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, mββ. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a ``physics-motivated range'' (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and ββ isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that 136Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.
    Journal of Cosmology and Astroparticle Physics 06/2011; 2011(06):007. · 6.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss neutrinoless double beta decay and lepton flavor violating decays such as $\mu-> e\gamma$ in the colored seesaw scenario. In this mechanism, neutrino masses are generated at one-loop via the exchange of TeV-scale fermionic and scalar color octets. The same particles mediate lepton number and flavor violating processes. We show that within this framework a dominant color octet contribution to neutrinoless double beta decay is possible without being in conflict with constraints from lepton flavor violating processes. We furthermore compare the "direct" color octet contribution to neutrinoless double beta decay with the "indirect" contribution, namely the usual standard light Majorana neutrino exchange. For degenerate color octet fermionic states both contributions are proportional to the usual effective mass, while for non-degenerate octet fermions this feature is not present. Depending on the model parameters, either of the contributions can be dominant.
    Journal of High Energy Physics 01/2012; 2012(5). · 5.62 Impact Factor
  • Source


Available from