Article

Q-balls in flat potentials

Physical review D: Particles and fields 05/2009; DOI: 10.1103/PhysRevD.80.025016
Source: arXiv

ABSTRACT We study the classical and absolute stability of Q-balls in scalar field theories with flat potentials arising in both gravity-mediated and gauge-mediated models. We show that the associated Q-matter formed in gravity-mediated potentials can be stable against decay into their own free particles as long as the coupling constant of the nonrenormalisable term is small, and that all of the possible three-dimensional Q-ball configurations are classically stable against linear fluctuations. Three-dimensional gauge-mediated Q-balls can be absolutely stable in the "thin-wall-like" limit, but are completely unstable in the "thick-wall" limit. Comment: 26 pages, 25 figures

0 Bookmarks
 · 
50 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flat directions charged under an R-symmetry are a generic feature of O'Raifeartaigh models. Non-topological solitons associated with this symmetry, R-balls, are likely to form through the fragmentation of a condensate, itself created by soft terms induced during inflation. In gravity mediated SUSY breaking R-balls decay to gravitinos, reheating the universe. For gauge mediation R-balls can provide a good dark matter candidate. Alternatively they can decay, either reheating or cooling the universe. Conserved R-symmetry permits decay to gravitinos or gauginos, whereas spontaneously broken R-symmetry results in decay to visible sector gauge bosons.
    Journal of High Energy Physics 06/2011; · 5.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flat directions charged under an R-symmetry are a generic feature of O’Raifeartaigh models. Non-topological solitons associated with this symmetry, R-balls, are likely to form through the fragmentation of a condensate, itself created by soft terms induced during inflation. In gravity mediated SUSY breaking R-balls decay to gravitinos, reheating the universe. For gauge mediation R-balls can provide a good dark matter candidate. Alternatively they can decay, either reheating or cooling the universe. Conserved R-symmetry permits decay to gravitinos or gauginos, whereas spontaneously broken R-symmetry results in decay to visible sector gauge bosons.
    Journal of High Energy Physics 01/2011; 2011(8):1-28. · 5.62 Impact Factor

Full-text

View
1 Download
Available from