The use of a biodegradable, load-bearing scaffold as a carrier for antibiotics in an infected open fracture model.

Division of Orthopaedics, University of Alabama at Birmingham, Birmingham, AL 35233-3409, USA.
Journal of orthopaedic trauma (Impact Factor: 1.78). 09/2010; 24(9):587-91. DOI: 10.1097/BOT.0b013e3181ed1349
Source: PubMed

ABSTRACT Open fractures with bone loss are common, disabling injuries. Biodegradable, load-bearing scaffolds able to carry high concentrations of local antibiotics are an emerging technology to address these injuries. This study investigates the use of such scaffolds with gentamicin (along with bone morphogenetic protein) in an infected rat open fracture model to decrease osteomyelitis and promote fracture healing.
A contaminated open fracture was created in 32 Brown Norway rats. A comminuted femoral fracture was created, followed by crushing, and the 5-mm bone defect was inoculated with Staphylococcus aureus (10 colony-forming units/mL) and Escherichia coli (10 colony-forming units/mL). The scaffold was stabilized in the defect with an intramedullary Kirschner wire. Gentamicin was loaded onto the scaffolds at two doses, either 10 mg (n = 12) or 20 mg (n = 10). Controls (n = 10) received no antibiotics. All three groups had 10 microg bone morphogenetic protein loaded on the scaffold. Serial radiographs were obtained. Microbiologic analysis, microcomputed tomography, and histology were performed.
There was a statistically significant difference in the radiographic evidence of osteomyelitis (P = 0.004) and callus formation (P = 0.021) between the treated and control groups. Bone culture analysis results were not significant for S. aureus (P = 0.29) or E. coli (P = 0.25). There was no difference in the mean scaffold volume or density of the three treatment groups.
Our results suggest that gentamicin applied to a biodegradable scaffold is effective at decreasing radiographically defined osteomyelitis in an infected open fracture.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A biodegradable, composite bone graft, composed of chitosan microspheres embedded in calcium sulfate, was evaluated in vitro for point-of-care loading and delivery of antibiotics and growth factors to prevent infection and stimulate healing in large bone injuries. Microspheres were loaded with rhBMP-2 or vancomycin prior to mixing into calcium sulfate loaded with vancomycin. Composites were evaluated for set time, drug release kinetics, and bacteriostatic/bactericidal activity of released vancomycin, induction of ALP expression by released rhBMP-2, and interaction of drugs on cells. Results showed the composite set in under 36 min and released vancomycin levels that were bactericidal to S. aureus (>MIC 8-16 μg/mL) for 18 days. Composites exhibited a 1 day-delayed release, followed by a continuous release of rhBMP-2 over 6 weeks; ranging from 0.06 to 1.49 ng/mL, and showed a dose dependent release based on initial loading. Released rhBMP-2 levels were, however, too low to induce detectable levels of ALP in W20-17 cells, due to the affinity of rhBMP-2 for calcium-based materials. With stimulating amounts of rhBMP-2 (>50 ng/mL), the ALP response from W-20-17 cells was inhibited when exposed to high vancomycin levels (1,800-3,600 μg/mL). This dual-delivery system is an attractive alternative to single delivery or preloaded systems for bone regeneration since it can simultaneously fight infection and deliver a potent growth factor. Additionally, this composite can accommodate a wide range of therapeutics and thus be customizable for specific patient needs, however, the potential interactive effects of multiple agents must be investigated to ensure that functional activity is not altered.
    Journal of Materials Science Materials in Medicine 02/2014; · 2.14 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics.
    International Journal of Nanomedicine 01/2014; 9:4347-4355. · 4.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: a b s t r a c t Infectious complications of open fractures continue to be a significant factor contributing to non-osseous union and extremity amputation. The persistence of bacteria within biofilms despite meticulous debridement and antibiotic therapy is believed to be a major cause of chronic infection. Considering the difficulties in treating biofilm-associated infections, the use of biofilm dispersal agents as a therapeutic strategy for the prevention of biofilm-associated infections has gained considerable interest. In this study, we investigated whether local delivery of D-Amino Acids (D-AAs), a biofilm dispersal agent, pro-tects scaffolds from contamination and reduces microbial burden within contaminated rat segmental defects in vivo. In vitro testing on biofilms of clinical isolates of Staphylococcus aureus demonstrated that D-Met, D-Phe, D-Pro, and D-Trp were highly effective at dispersing and preventing biofilm formation individually, and the effect was enhanced for an equimolar mixture of D-AAs. Incorporation of D-AAs into polyurethane scaffolds as a mixture (1:1:1 D-Met:D-Pro:D-Trp) significantly reduced bacterial contami-nation on the scaffold surface in vitro and within bone when implanted into contaminated femoral segmental defects. Our results underscore the potential of local delivery of D-AAs for reducing bacterial contamination by targeting bacteria within biofilms, which may represent a treatment strategy for improving healing outcomes associated with open fractures. Published by Elsevier Ltd.
    Biomaterials 01/2013; · 8.31 Impact Factor

Full-text (2 Sources)

Available from
Oct 21, 2014