Article

Akt-RSK-S6 kinase signaling networks activated by oncogenic receptor tyrosine kinases.

Cell Signaling Technology Inc., Danvers, MA 01923, USA.
Science Signaling (Impact Factor: 7.65). 08/2010; 3(136):ra64. DOI: 10.1126/scisignal.2000998
Source: PubMed

ABSTRACT Receptor tyrosine kinases (RTKs) activate pathways mediated by serine-threonine kinases, such as the PI3K (phosphatidylinositol 3-kinase)-Akt pathway, the Ras-MAPK (mitogen-activated protein kinase)-RSK (ribosomal S6 kinase) pathway, and the mTOR (mammalian target of rapamycin)-p70 S6 pathway, that control important aspects of cell growth, proliferation, and survival. The Akt, RSK, and p70 S6 family of protein kinases transmits signals by phosphorylating substrates on an RxRxxS/T motif (R, arginine; S, serine; T, threonine; and x, any amino acid). We developed a large-scale proteomic approach to identify more than 300 substrates of this kinase family in cancer cell lines driven by the c-Met, epidermal growth factor receptor (EGFR), or platelet-derived growth factor receptor alpha (PDGFRalpha) RTKs. We identified a subset of proteins with RxRxxS/T sites for which phosphorylation was decreased by RTK inhibitors (RTKIs), as well as by inhibitors of the PI3K, mTOR, and MAPK pathways, and we determined the effects of small interfering RNA directed against these substrates on cell viability. Phosphorylation of the protein chaperone SGTA (small glutamine-rich tetratricopeptide repeat-containing protein alpha) at serine-305 was essential for PDGFRalpha stabilization and cell survival in PDGFRalpha-dependent cancer cells. Our approach provides a new view of RTK and Akt-RSK-S6 kinase signaling, revealing previously unidentified Akt-RSK-S6 kinase substrates that merit further consideration as targets for combination therapy with RTKIs.

0 Followers
 · 
190 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes express a variety of G protein-coupled receptors and might influence cognitive functions, such as learning and memory. However, the roles of astrocytic Gs-coupled receptors in cognitive function are not known. We found that humans with Alzheimer's disease (AD) had increased levels of the Gs-coupled adenosine receptor A2A in astrocytes. Conditional genetic removal of these receptors enhanced long-term memory in young and aging mice and increased the levels of Arc (also known as Arg3.1), an immediate-early gene that is required for long-term memory. Chemogenetic activation of astrocytic Gs-coupled signaling reduced long-term memory in mice without affecting learning. Like humans with AD, aging mice expressing human amyloid precursor protein (hAPP) showed increased levels of astrocytic A2A receptors. Conditional genetic removal of these receptors enhanced memory in aging hAPP mice. Together, these findings establish a regulatory role for astrocytic Gs-coupled receptors in memory and suggest that AD-linked increases in astrocytic A2A receptor levels contribute to memory loss.
    Nature Neuroscience 01/2015; DOI:10.1038/nn.3930 · 14.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Receptor tyrosine kinases (RTKs) bind to a subset of growth factors on the surface of cells and elicit responses with broad roles in developmental and postnatal cellular processes. Receptors in this subclass consist of an extracellular ligand-binding domain, a single transmembrane domain, and an intracellular domain harboring a catalytic tyrosine kinase and regulatory sequences that are phosphorylated either by the receptor itself or by various interacting proteins. Once activated, RTKs bind signaling molecules and recruit effector proteins to mediate downstream cellular responses through various intracellular signaling pathways. In this chapter, we highlight the role of a subset of RTK families in regulating the activity of neural crest cells (NCCs) and the development of their derivatives in mammalian systems. NCCs are migratory, multipotent cells that can be subdivided into four axial populations, cranial, cardiac, vagal, and trunk. These cells migrate throughout the vertebrate embryo along defined pathways and give rise to unique cell types and structures. Interestingly, individual RTK families often have specific functions in a subpopulation of NCCs that contribute to the diversity of these cells and their derivatives in the mammalian embryo. We additionally discuss current methods used to investigate RTK signaling, including genetic, biochemical, large-scale proteomic, and biosensor approaches, which can be applied to study intracellular signaling pathways active downstream of this receptor subclass during NCC development. © 2015 Elsevier Inc. All rights reserved.
    Current Topics in Developmental Biology 01/2015; 111:135-82. DOI:10.1016/bs.ctdb.2014.11.005 · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphorylation plays a central role in the dynamic intracellular signaling and the control of biochemical pathways in all living cells. Recent advances in high-performance MS/MS-based technology make the large-scale identification and quantification of phosphorylation sites possible. Here, we review the full data generation pipeline, starting from sample preparation methods and LC-MS detection procedures, through to data processing and analysis software tools that facilitate the systematic comparative profiling of thousands of phosphoproteins in different biological specimens in a single experiment. We emphasize current challenges and promising avenues for the mechanistic interpretation and visualization of global phosphorylation networks and their relevance to human health and disease.
    Bioanalysis 09/2014; 6(18):2403-20. DOI:10.4155/bio.14.188 · 3.03 Impact Factor