Article

Measurement of lipoprotein particle sizes using dynamic light scattering.

Faculty of Health Sciences, Hokkaido University, Japan.
Annals of Clinical Biochemistry (Impact Factor: 1.92). 09/2010; 47(Pt 5):476-81. DOI: 10.1258/acb.2010.010100
Source: PubMed

ABSTRACT A simple method for the measurement of LDL particle sizes is needed in clinical laboratories because a predominance of small, dense LDL (sd LDL) has been associated with coronary heart disease. We applied dynamic light scattering (DLS) to measure lipoprotein particle sizes, with special reference to sd LDL.
Human serum lipoproteins isolated by a combination of ultracentrifugation and gel chromatography, or by sequential ultracentrifugation, were measured for particle size using DLS.
The sizes of polystyrene beads, with diameters of 21 and 28 nm according to the manufacturer, were determined by DLS as 19.3 +/- 1.0 nm (mean +/- SD, n = 11) and 25.5 +/- 1.0 nm, respectively. The coefficients of variation for the 21 and 28 nm beads were 5.1% and 3.8% (within-run, n = 11), and 2.9% and 6.2% (between-run, n = 3), respectively. The lipoprotein sizes determined by DLS for lipoprotein fractions isolated by chromatography were consistent with the elution profile. Whole serum, four isolated lipoprotein fractions (CM + VLDL + IDL, large LDL, sd LDL and HDL) and a non-lipoprotein fraction isolated by sequential ultracentrifugation were determined by DLS to be 13.1 +/- 7.5, 37.0 +/- 5.2, 21.5 +/- 0.8, 20.3 +/- 1.1, 8.6 +/- 1.5 and 8.8 +/- 2.0 nm, respectively.
The proposed DLS method can differentiate the sizes of isolated lipoprotein particles, including large LDL and sd LDL, and might be used in clinical laboratories in combination with convenient lipoprotein separation.

0 Bookmarks
 · 
194 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The sizes of certain types of lipoprotein particles have been associated with an increased risk of cardiovascular disease. However, there is currently no gold standard technique for the determination of this parameter. Here, we propose an analytical procedure to measure lipoprotein particles sizes using diffusion-ordered nuclear magnetic resonance spectroscopy (DOSY). The method was tested on six lipoprotein fractions, VLDL, IDL, LDL1, LDL2, HDL2, and HDL3, which were obtained by sequential ultracentrifugation from four patients. We performed a pulsed-field gradient experiment on each fraction to obtain a mean diffusion coefficient, and then determined the apparent hydrodynamic radius using the Stokes–Einstein equation. To validate the hydrodynamic radii obtained, the particle size distribution of these lipoprotein fractions was also measured using transmission electron microscopy (TEM). The standard errors of duplicate measurements of diffusion coefficient ranged from 0.5% to 1.3%, confirming the repeatability of the technique. The coefficient of determination between the hydrodynamic radii and the TEM-derived mean particle size was r2 = 0.96, and the agreement between the two techniques was 85%. Thus, DOSY experiments have proved to be accurate and reliable for estimating lipoprotein particle sizes.
    Analytical and Bioanalytical Chemistry 02/2012; 402(7):2407-15. · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine- specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2(Int) mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.
    Biochimica et Biophysica Acta 05/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Figure optionsView in workspace
    Progress in Nuclear Magnetic Resonance Spectroscopy 04/2013; 70:1-24. · 6.02 Impact Factor

Full-text (2 Sources)

View
105 Downloads
Available from
May 21, 2014