Article

Chemical composition of the essential oil and hexane extract of Salvia chionantha and their antioxidant and anticholinesterase activities.

Faculty of Arts and Sciences, Department of Chemistry, Mugla University, 48121 Mugla, Turkey.
Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association (Impact Factor: 2.99). 11/2010; 48(11):3189-93. DOI: 10.1016/j.fct.2010.08.020
Source: PubMed

ABSTRACT The essential oil and methyl ester of hexane extract of Salvia chionantha Boiss. were analysed by GC and GC-MS. Totally, 54 components were detected in the essential oil and all of them were fully determined. Germacrene D (25.03%), β-caryophyllene (8.71%), spathulenol (5.86%) and α-humulene (4.82%) were identified as the major compounds. In the methylated hexane extract, 3-hydroxy hexadecanoic acid (39.39%), 3-hydroxy tetradecanoic acid (12.66%) and palmitic acid (12.02%) were the major fatty acids elucidated. The antioxidant activity of the essential oil and the hexane extract was determined by using four complementary test systems; namely, β-carotene-linoleic acid, DPPH() scavenging, ABTS(+)* scavenging, and CUPRAC assays. In β-carotene-linoleic acid assay, the extract showed 81.2±0.1% lipid peroxidation inhibition at 0.8 mg/mL concentration, while in ABTS(+)* assay the essential oil exhibited 77.4±0.5% inhibition at same concentration. Since, acetylcholinesterase and butyrylcholinesterase enzymes are taking place in pathogenesis of Alzheimer's disease, in vitro anticholinesterase activity of the essential oil and the extract was also studied spectrophotometrically. At 0.5mg/mL concentration, the essential oil showed moderate acetylcholinesterase (56.7±1.9%) and butyrylcholinesterase (41.7±2.9%) inhibitory activity, while the extract was only exhibited activity (63.1±0.8%) against butyrylcholinesterase enzyme. Hence, the essential oil may be useful as a moderate anticholinesterase agent, particularly against acetylcholinesterase.

0 Bookmarks
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: While clinical studies show maternal consumption of palatable fat-rich diets during pregnancy to negatively impact the children's behaviors and increase their vulnerability to drug abuse, the precise behavioral and neurochemical mechanisms mediating these phenomena have yet to be examined. The study examined in rats whether gestational exposure to a high-fat diet (HFD) can increase the offspring's propensity to use nicotine and whether disturbances in central nicotinic cholinergic signaling accompany this behavioral effect. Rat offspring exposed perinatally to a HFD or chow diet were characterized in terms of their nicotine self-administration behavior in a series of operant response experiments and the activity of acetylcholinesterase (AChE) and density of nicotinic ACh receptors (nAChRs) in different brain areas. Perinatal HFD compared to chow exposure increased nicotine-self administration behavior during fixed ratio and dose-response testing and caused an increase in breakpoint using progressive ratio testing, while nicotine seeking in response to nicotine prime-induced reinstatement was reduced. This behavioral change induced by the HFD was associated with a significant reduction in activity of AChE in the midbrain, hypothalamus, and striatum and increased density of β2-nAChRs in the ventral tegmental area and substantia nigra and of α7-nAChRs in the lateral and ventromedial hypothalamus. Perinatal exposure to a HFD increases the vulnerability of the offspring to excessive nicotine use by enhancing its reward potential, and these behavioral changes are accompanied by a stimulation of nicotinic cholinergic signaling in mesostriatal and hypothalamic brain areas important for reinforcement and consummatory behavior.
    Psychopharmacology 07/2013; · 4.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemical composition, antimicrobial and antioxidant activities of the essential oil of Ampelopsis megalophylla were evaluated in this research. GC-MS analysis of the essential oil revealed 42 compounds, representing 88.54% of the oil. The major compounds were borneol (10.81%), α-pinene (6.74%) and β-elemene (6.23%). The antimicrobial activity of the essential oil was evaluated against 13 micro-organisms using the disc diffusion and broth microdilution methods. Results demonstrated higher effects of this oil against Gram-positive bacteria than the other reference strains tested. The antioxidant effect of the essential oil was evaluated by using 1,1-Diphenyl-2-picrylhydrazyl (DPPH) and 2,20-azinobis-3-ethylbenzthiazoline-6-sulfonate scavenging assays. The essential oil exhibited moderate antioxidant activity.
    Natural product research 02/2014; · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isodon rugosus is used in folk Pakistan traditional practices to cure ailments related to gastrointestinal, respiratory and cardiovascular problems. Present study was undertaken to validate these folkloric uses. A crude methanol extract of the aerial parts of Isodon rugosus (Ir.Cr.) was used for both in vitro and in vivo experiments. The plant extract was tested on isolated rabbit jejunum preparations for possible presence of spasmolytic activity. Moreover, isolated rabbit tracheal and aorta preparations were used to ascertain the relaxant effects of the extract. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of Ir.Cr were also determined as well as its antioxidant activity. The in vivo antiemetic activity of the extract was evaluated by using the chick emesis model, while the analgesic and antipyretic activities were conducted on albino mice. The application of the crude extract of I. rugosus to isolated rabbit jejunum preparations exhibited relaxant effect (0.01-0.3 mg/ml). The Ir.Cr also relaxed K+(80 m M)-induced spastic contractions in isolated rabbit jejunum preparations and shifted the Ca+2 concentration response curves towards right (0.01-0.3 mg/ml). Similarly, the extract, when applied to the isolated rabbit tracheal preparations relaxed the carbachol (1 muM)- as well as K+ (80 mM)-induced contractions in a concentration range of 0.01-1.0 mg/ml. Moreover, it also relaxed (0.01-3.0 mg/ml) the phenylephrine (1 muM)- and K+ (80 mM)-induced contractions in isolated rabbit aorta preparations. The Ir.Cr (80 mg/kg) demonstrated antipyretic activity on pyrogen-induced pyrexia in rabbits as compared to aspirin as standard drug. The Ir.Cr also exhibited anti-oxidant as well as inhibitory effect on acetyl- and butyryl- cholinesterase and lipoxygenase (0.5 mg/ml). The observed relaxant effect on isolated rabbit jejunum, trachea and aorta preparations caused by Ir.Cr is possibly to be mediated through Ca+2 channel blockade and therefore may provided scientific basis to validate the folkloric uses of the plant in the management of gastrointestinal, respiratory and cardiovascular ailments. The observed antioxidant activity as well as the lipoxygenase inhibitory activity may validate its traditional use in pain and inflammations.
    BMC Complementary and Alternative Medicine 02/2014; 14(1):71. · 2.08 Impact Factor