Article

The breast cancer tumor suppressor BRCA2 promotes the specific targeting of RAD51 to single-stranded DNA.

London Research Institute, Cancer Research UK, Clare Hall Laboratories, South Mimms, Hertfordshire, UK.
Nature Structural & Molecular Biology (Impact Factor: 11.63). 10/2010; 17(10):1263-5. DOI: 10.1038/nsmb.1905
Source: PubMed

ABSTRACT Individuals with BRCA2 mutations are predisposed to breast cancers owing to genome instability. To determine the functions of BRCA2, the human protein was purified. It was found to bind selectively to single-stranded DNA (ssDNA), and to ssDNA in tailed duplexes and replication fork structures. Monomeric and dimeric forms of BRCA2 were observed by EM. BRCA2 directed the binding of RAD51 recombinase to ssDNA, reduced the binding of RAD51 to duplex DNA and stimulated RAD51-mediated DNA strand exchange. These observations provide a molecular basis for the role of BRCA2 in the maintenance of genome stability.

1 Follower
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Missense variants in the BRCA2 gene are routinely detected during clinical screening for pathogenic mutations in patients with a family history of breast and ovarian cancer. These subtle changes frequently remain of unknown clinical significance because of the lack of genetic information that may help establish a direct correlation with cancer predisposition. Therefore, alternative ways of predicting the pathogenicity of these variants are urgently needed. Since BRCA2 is a protein involved in important cellular mechanisms such as DNA repair, replication, and cell cycle control, functional assays have been developed that exploit these cellular activities to explore the impact of the variants on protein function. In this review, we summarize assays developed and currently utilized for studying missense variants in BRCA2. We specifically depict details of each assay, including variants of uncertain significance analyzed, and describe a validation set of (genetically) proven pathogenic and neutral missense variants to serve as a golden standard for the validation of each assay. Guidelines are proposed to enable implementation of laboratory-based methods to assess the impact of the variant on cancer risk.
    Human Mutation 02/2014; 35(2):151-64. DOI:10.1002/humu.22478 · 5.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Communicated by Georgia Chenevix-Trench
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein ubiquitylation and sumoylation play key roles in regulating cellular responses to DNA double-strand breaks (DSBs). Here, we show that human RNF4, a small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, is recruited to DSBs in a manner requiring its SUMO interaction motifs, the SUMO E3 ligases PIAS1 and PIAS4, and various DSB-responsive proteins. Furthermore, we reveal that RNF4 depletion impairs ubiquitin adduct formation at DSB sites and causes persistent histone H2AX phosphorylation (γH2AX) associated with defective DSB repair, hypersensitivity toward DSB-inducing agents, and delayed recovery from radiation-induced cell cycle arrest. We establish that RNF4 regulates turnover of the DSB-responsive factors MDC1 and replication protein A (RPA) at DNA damage sites and that RNF4-depleted cells fail to effectively replace RPA by the homologous recombination factors BRCA2 and RAD51 on resected DNA. Consistent with previous data showing that RNF4 targets proteins to the proteasome, we show that the proteasome component PSMD4 is recruited to DNA damage sites in a manner requiring its ubiquitin-interacting domains, RNF4 and RNF8. Finally, we establish that PSMD4 binds MDC1 and RPA1 in a DNA damage-induced, RNF4-dependent manner and that PSMD4 depletion cause MDC1 and γH2AX persistence in irradiated cells. RNF4 thus operates as a DSB response factor at the crossroads between the SUMO and ubiquitin systems.
    Genes & development 06/2012; 26(11):1179-95. DOI:10.1101/gad.188284.112 · 12.64 Impact Factor