β2-Adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4.

Department of Medicine, Division of Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
Journal of cardiovascular pharmacology (Impact Factor: 2.83). 11/2010; 56(5):548-59. DOI: 10.1097/FJC.0b013e3181f713fe
Source: PubMed

ABSTRACT Chemokines are small secreted proteins with chemoattractant properties that play a key role in inflammation, metastasis, and embryonic development. We previously demonstrated a nonchemotactic role for one such chemokine pair, stromal cell-derived factor-1α and its G-protein coupled receptor, CXCR4. Stromal cell-derived factor-1/CXCR4 are expressed on cardiac myocytes and have direct consequences on cardiac myocyte physiology by inhibiting contractility in response to the nonselective β-adrenergic receptor (βAR) agonist, isoproterenol. As a result of the importance of β-adrenergic signaling in heart failure pathophysiology, we investigated the underlying mechanism involved in CXCR4 modulation of βAR signaling. Our studies demonstrate activation of CXCR4 by stromal cell-derived factor-1 leads to a decrease in βAR-induced PKA activity as assessed by cAMP accumulation and PKA-dependent phosphorylation of phospholamban, an inhibitor of SERCA2a. We determined CXCR4 regulation of βAR downstream targets is β2AR-dependent. We demonstrated a physical interaction between CXCR4 and β2AR as determined by coimmunoprecipitation, confocal microscopy, and BRET techniques. The CXCR4-β2AR interaction leads to G-protein signal modulation and suggests the interaction is a novel mechanism for regulating cardiac myocyte contractility. Chemokines are physiologically and developmentally relevant to myocardial biology and represent a novel receptor class of cardiac modulators. The CXCR4-β2AR complex could represent a hitherto unknown target for therapeutic intervention.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemokine (C-X-C motif) receptor (CXCR) 4 and atypical chemokine receptor (ACKR) 3 ligands have been reported to modulate cardiovascular function in various disease models. The underlying mechanisms, however, remain unknown. Thus, it was the aim of the present study to determine how pharmacological modulation of CXCR4 and ACKR3 regulate cardiovascular function. In vivo administration of TC14012, a CXCR4 antagonist and ACKR3 agonist, caused cardiovascular collapse in normal animals. During the cardiovascular stress response to hemorrhagic shock, ubiquitin, a CXCR4 agonist, stabilized blood pressure, whereas co-activation of CXCR4 and ACKR3 with CXC chemokine ligand 12 (CXCL12), or blockade of CXCR4 with AMD3100 showed opposite effects. While CXCR4 and ACKR3 ligands did not affect myocardial function, they selectively altered vascular reactivity upon α1-adrenergic receptor activation in pressure myography experiments. CXCR4 activation with ubiquitin enhanced α1-AR mediated vasoconstriction, whereas ACKR3 activation with various natural and synthetic ligands antagonized α1-AR mediated vasoconstriction. The opposing effects of CXCR4 and ACKR3 activation by CXCL12 could be dissected pharmacologically. CXCR4 and ACKR3 ligands did not affect vasoconstriction upon activation of voltage-operated Ca(2+) channels or endothelin receptors. Effects of CXCR4 and ACKR3 agonists on vascular α1-AR responsiveness were independent of the endothelium. These findings suggest that CXCR4 and ACKR3 modulate α1-adrenergic receptor reactivity in vascular smooth muscle and regulate hemodynamics in normal and pathological conditions. Our observations point towards CXCR4 and ACKR3 as new pharmacological targets to control vasoreactivity and blood pressure.
    Molecular medicine (Cambridge, Mass.). 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chemokine receptor CXCR4 and its ligand CXCL12 play an important homeostatic function by mediating the homing of progenitor cells in the bone marrow and regulating their mobilization into peripheral tissues upon injury or stress. Although the CXCL12/CXCR4 interaction has long been regarded as a monogamous relation, the identification of the pro-inflammatory chemokine macrophage migration inhibitory factor (MIF) as an important second ligand for CXCR4, and of CXCR7 as an alternative receptor for CXCL12, has undermined this interpretation and has considerably complicated the understanding of CXCL12/CXCR4 signaling and associated biological functions. This review aims to provide insight into the current concept of the CXCL12/CXCR4 axis in myocardial infarction (MI) and its underlying pathologies such as atherosclerosis and injury-induced vascular restenosis. It will discuss main findings from in vitro studies, animal experiments and large-scale genome-wide association studies. The importance of the CXCL12/CXCR4 axis in progenitor cell homing and mobilization will be addressed, as will be the function of CXCR4 in different cell types involved in atherosclerosis. Finally, a potential translation of current knowledge on CXCR4 into future therapeutical application will be discussed.
    Frontiers in physiology. 01/2014; 5:212.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The β2-adrenergic receptor (β2AR) is the prototypic member of G protein-coupled receptors (GPCRs) involved in production of physiological responses to adrenaline and noradrenaline. Research done in the past few years vastly demonstrated that β2AR can form homo- and hetero-oligomers. Despite the fact that currently this phenomenon is widely accepted, the spread and relevance of β2AR oligomerization is still a matter of debate. This review considers the progress achieved in the field of β2AR oligomerization with focus on the implications of the receptor-receptor interactions to β2AR trafficking, pharmacology and downstream signal transduction pathways.
    Cellular Signalling 07/2014; · 4.47 Impact Factor

Full-text (2 Sources)

Available from
Jun 5, 2014