Evaluation of the bacterial diversity in the rumen and feces of cattle fed diets containing levels of dried distiller’s grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP)

Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, USDA, College Station, TX 77845, USA.
Journal of Animal Science (Impact Factor: 2.11). 12/2010; 88(12):3977-83. DOI: 10.2527/jas.2010-2900
Source: PubMed


Dietary components and changes cause shifts in the gastrointestinal microbial ecology that can play a role in animal health and productivity. However, most information about the microbial populations in the gut of livestock species has not been quantitative. In the present study, we utilized a new molecular method, bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) that can perform diversity analyses of gastrointestinal bacterial populations. In the present study, cattle (n = 6) were fed a basal feedlot diet and were subsequently randomly assigned to 1 of 3 diets (n = 2 cows per diet). In each diet, 0, 25, or 50% of the concentrate portion of the ration was replaced with dried distillers grain (DDGS). Ruminal and fecal bacterial populations were different when animals were fed DDGS compared with controls; ruminal and fecal Firmicute:Bacteroidetes ratios were smaller (P = 0.07) in the 25 and 50% DDG diets compared with controls. Ruminal pH was decreased (P < 0.05) in ruminal fluid from cattle fed diets containing 50% compared with 0% DDGS. Using bTEFAP, the normal microbiota of cattle were examined using modern molecular methods to understand how diets affect gastrointestinal ecology and the gastrointestinal contribution of the microbiome to animal health and production.

Download full-text


Available from: Paul Kononoff, Sep 10, 2015
  • Source
    • "ogenesis has been impeded in the rumen . New molecular techniques , such as next - generation sequencing ( NGS ) , have been adopted to study rumen microbiology , providing a higher resolution observation of the rumen microbial populations with respect to metabolic activity , abundance and facilitating the analysis of an increased volume of data ( Callaway et al . , 2010 ; Hess et al . , 2011 ; Lee et al . , 2012 ; Pope et al . , 2012 ; Ross et al . , 2012 ; St - Pierre and Wright , 2013 ) . Therefore , we have studied the effect of different levels of the antimethanogenic compound , BCM - CD , on the rumen microbial community in goats using metagenomic sequence analysis . The aim of the present study wa"
    [Show abstract] [Hide abstract]
    ABSTRACT: Japanese goats fed a diet of 50% Timothy grass and 50% concentrate with increasing levels of the anti-methanogenic compound, bromochloromethane (BCM) were investigated with respect to the microbial population and functional shifts in the rumen. Microbial ecology methods identified species that exhibited positive and negative responses to the increasing levels of BCM. The methane-inhibited rumen appeared to adapt to the higher H2 levels by shifting fermentation to propionate which was mediated by an increase in the population of H2-consuming Prevotella and Selenomonas spp. Metagenomic analysis of propionate production pathways was dominated by genomic content from these species. Reductive acetogenic marker gene libraries and metagenomics analysis indicate that reductive acetogenic species do not play a major role in the BCM treated rumen.
    Frontiers in Microbiology 09/2015; 6:1087. DOI:10.3389/fmicb.2015.01087 · 3.99 Impact Factor
  • Source
    • "The 98 sequences belonged to the dominion Bacterium, of which approximately 97.96% were related to the Bacteroidetes phylum and only 2.04% of the sequences to the Firmicutes phylum. The predominance of the phyla corroborates data given by several authors who reported that the most relevant identified phyla in bovine rumen are the Bacteroidetes and Firmicutes phyla (Callaway et al., 2010; Chen et al., 2011; Li et al., 2014). Most sequences (47.96%) of the Bacteroidetes phylum belonged to the genus Prevotella, or rather, gram-negative, obligatory anaerobic, non-sporulating bacteria, without any motility and shaped as pleomorphic rods (Shah & Collins, 1990). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial diversity by 16S rDNA partial sequencing and scanning electron microscope (SEM) of the rumen microbiome was characterized. Three Nellore bovines, cannulated at the rumen, were utilized. Liquid and solid fractions from the rumen content were processed for the extraction of metagenomic DNA and later 16S rDNA amplicons were utilized to construct the WGA library for further clone sequencing. Data were analyzed by MEGA and MOTUR (University of Michigan) softwares. Approximately 97.96% of operation taxonomic units (OTUs) were related to Bacteriodetes phylum and 2.04% of sequences were affiliated to Firmicutes phylum. In the case of Bacteriodetes, the great part of sequences (47.96%) was attributed to Prevotella genus. Bacteroidetes phylum was predominant in rumen content and the Prevotella genus was the most abundant, including diverse species related to this taxon. The bacterial morphological diversity associated to plant fibers was detected by SEM and showed its role in plant biomass deconstruction beyond the detection of microbiological interactions that involved protozoa. © 2015, Eduem - Editora da Universidade Estadual de Maringa. All rights reserved.
    Acta Scientiarum Animal Sciences 08/2015; 37(3):251-257. DOI:10.4025/actascianimsci.v37i3.26535
  • Source
    • "In accordance with other studies, Prevotella, which comprise a well-known xylan degrading group (Flynt and Bayer 2008; Dodd et al. 2010), is always the dominant bacterial genus found in the rumen microbiome, regardless the animal species, host diet, geographical location or approach used to assess the microbiome (Stevenson and Weimer 2007; Callaway et al. 2010; Purushe et al. 2010; Lee et al. 2012; Li et al. 2012; Pitta et al. 2010). In addition to Prevotellaceae, other bacterial families normally detected in the rumen of different animal species were detected in high relative abundance in the sheep rumen microbiome, which included Succinivibrionaceae (Succinivibrio genus) (Callaway et al. 2010; Lee et al. 2012), Ruminococcaceae (Ruminococcus genus) (Lee et al. 2012), Veillonellaceae (Succiniclasticum genus) (Callaway et al. 2010; Lee et al. 2012), Porphyromonadaceae (Paludibacter genus) (Pitta "
    [Show abstract] [Hide abstract]
    ABSTRACT: The rumen is a complex ecosystem enriched for microorganisms able to degrade biomass during the animal's digestion process. The recovery of new enzymes from naturally evolved biomass-degrading microbial communities is a promising strategy to overcome the inefficient enzymatic plant destruction in industrial production of biofuels. In this context, this study aimed to describe the bacterial composition and functions in the sheep rumen microbiome, focusing on carbohydrate-active enzymes (CAE). Here, we used phylogenetic profiling analysis (inventory of 16S rRNA genes) combined with metagenomics to access the rumen microbiome of four sheep and explore its potential to identify fibrolytic enzymes. The bacterial community was dominated by Bacteroidetes and Firmicutes, followed by Proteobacteria. As observed for other ruminants, Prevotella was the dominant genus in the microbiome, comprising more than 30 % of the total bacterial community. Multivariate analysis of the phylogenetic profiling data and chemical parameters showed a positive correlation between the abundance of Prevotellaceae (Bacteroidetes phylum) and organic matter degradability. A negative correlation was observed between Succinivibrionaceae (Proteobacteria phylum) and methane production. An average of 2 % of the shotgun metagenomic reads was assigned to putative CAE when considering nine protein databases. In addition, assembled contigs allowed recognition of 67 putative partial CAE (NCBI-Refseq) representing 12 glycosyl hydrolase families (Pfam database). Overall, we identified a total of 28 lignocellulases, 22 amylases and 9 other putative CAE, showing the sheep rumen microbiome as a promising source of new fibrolytic enzymes.
    Antonie van Leeuwenhoek 04/2015; 108(1). DOI:10.1007/s10482-015-0459-6 · 1.81 Impact Factor
Show more