Surface modified bacterial biosorbent with poly(allylamine hydrochloride): Development using response surface methodology and use for recovery of hexachloroplatinate(IV) from aqueous solution

Department of New Paradigm for BIN Fusion Technology, WCU Project, Chonbuk National University, Jeonbuk 561-756, Republic of Korea.
Water Research (Impact Factor: 5.53). 12/2010; 44(20):5919-28. DOI: 10.1016/j.watres.2010.07.034
Source: PubMed


In this study, poly(allylamine hydrochloride) (PAA/HCl) was cross-linked with fermentation bacterial waste (Escherichia coli) in order to introduce a large amount of amine groups as binding sites for potassium hexachloroplatinate(IV), as a model anionic pollutant. The sorption performance of PAA/HCl-modified E. coli was greatly affected by the dosages of PAA/HCl and crosslinker (epichlorohydrin, ECH), and by the pH of the modification reaction medium. These factors were optimized through the response surface methodology (RSM). A three-level factorial Box-Behnken design was performed, and a second-order polynomial model was successfully used to describe the effects of PAA/HCl, ECH and the pH on the Pt(IV) uptake (R(2) = 0.988). The optimal conditions that were obtained from the RSM were 0.49 g of PAA/HCl, 0.05 mL of ECH and pH 10.02, with 1.0 g of dried E. coli biomass. The biosorption isotherm and kinetics studies were carried out in order to evaluate the sorption potential of the PAA/HCl-modified E. coli that was prepared under the optimized conditions. The sorption performance of the developed bacterial biosorbent was 4.36 times greater than that of the raw E. coli. Desorption was carried out using 0.05 M acidified thiourea and the biosorbent was successfully regenerated and reused up to four cycles. Therefore, this simple and cost-effective method suggested here is a useful modification tool for the development of high performance biosorbents for the recovery of anionic precious metals.

6 Reads
  • Source
    • "The poly(allylamine hydrochloride)-modified biosorbent was prepared following previously reported method [23]. Briefly, 10 g of dried E. coli biomass was mixed with 100 mL PAA/HCl solution (6%, w/v), then incubated for 2 h at 25 ± 2 °C, while the pH was controlled to be at 10. Next, 0.5 mL ECH (99%) was dropped into the suspension of PAA/HCl and E. coli for crosslinking for 2 h. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the cationic bacterial biosorbent, poly(allylamine hydrochloride) (PAA/HCl)-modified Escherichia coli, was successfully immobilized as a chitosan fiber, which was proved to be a sustainable biosorbent for platinum removal and recovery from aqueous solutions in batch and column systems. Compared to the commercial ion exchange resins, PAA/HCl-modified E. coli chitosan fiber showed a quite good performance for Pt(IV) removal. Two-parameter (Langmuir and Freundlich) and three-parameter (Sips and Redlich–Peterson) models were employed to describe the batch isotherm experimental data. Among these four models, the Redlich–Peterson model fit best, with higher coefficient of determination, chi-square and average percentage error values. Thermodynamic parameters (ΔG0 < 0 and ΔH0 > 0) showed the spontaneity and endothermic nature of biosorption process. The kinetics of Pt(IV) biosorption with different initial concentrations were better fit by the pseudo-second-order model, with higher coefficient of determinations and more closely predicted qe values. An acidified 0.005 M thiourea was used to regenerate platinum from exhausted biosorbent maintaining desorption efficiencies over 90.2% until five cycles. In the column studies, the breakthrough curve showed a typical S-shaped curve, with breakthrough and exhaustion times appearing at 36.0 h and 52.5 h, respectively, which was opened up a possibility of column regeneration.
    Separation and Purification Technology 03/2015; 143. DOI:10.1016/j.seppur.2015.01.023 · 3.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biosorption properties of APDC modified S. albus were tested in batch and column conditions. Effective experimental parameters such as pH, biosorbent dosage, contact time, temperature, initial lead(II) ion concentration, flow rate and bed height were investigated. The biosorption capacity of modified biosorbent was at maximum when lead(II) solution pH and biosorbent dosage were 5.5 and 2.0 g L(-1), respectively. The biosorption equilibrium was established in 20 min. Langmuir isotherm fitted well to the equilibrium data and kinetics is found to fit pseudo-second-order model. Increase in ionic strength of lead(II) solutions caused a slight decrease in the biosorption yield of APDC-modified biosorbent. Co-ions affected the biosorption performance of modified biomass up to maximum 20.81% reduction. Column biosorption of lead(II) showed higher biosorption yields at lower flow rates. Required time of breakthrough point was found to be 200 min. The recommended mechanism was found to depend mainly on electrostatic interaction, ion-exchange and complex formation. The ion-exchange mechanism for lead(II) biosorption onto the modified biosorbent is verified from the ionic strength effect and EDX analysis. Carbonyl, phosphate and CN groups on the modified surface of S. albus were found to responsible for complexation with lead(II).
    Journal of hazardous materials 05/2012; 227-228:107-17. DOI:10.1016/j.jhazmat.2012.05.020 · 4.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural zeolite is a favorable NH(4)(+)-ion exchanger in the tertiary wastewater treatment. In this study, a natural Chinese zeolite was anatomized using the mercury injection method, X-ray diffraction, and scanning electron micrographs. The kinetic process of ammonium adsorption onto the zeolite was best described by the pseudo second order model; the adsorption equilibrium data fitted better to the Freundlich isotherm; and the exchange between ammonium and alkali/alkaline earth cations was in the order of Na(+) > Ca(2+) > K(+) > Mg(2+). Finally, the zeolite powder was applied for the tertiary treatment of coking wastewater, which still contained high concentration of ammonium after the secondary treatment by a sequencing batch reactor. The Box-Behnken design was used to design the experimental protocol, and the response surface methodology (RSM) was used for the optimization of adsorption factors. The RSM analysis showed the optimal adsorption factors as particle size, 0.03 mm; initial dosage of zeolite powder, 50.0 g/L; and contact time, 24 h. The highest ammonium removal rate was 75.0% predicted by the RMS. Considering settleability of the zeolite powder, the particle size of 0.25 mm was recommended in practice with a little loss of the ammonium removal: 70.9% as the RMS predicted.
    Water Science & Technology 11/2012; 67(3):619-27. DOI:10.2166/wst.2012.606 · 1.11 Impact Factor
Show more