Molecular cloning and characterization of Toll-like receptor 14 in Japanese flounder, Paralichthys olivaceus.

Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan.
Fish &amp Shellfish Immunology (Impact Factor: 3.03). 01/2011; 30(1):425-9. DOI: 10.1016/j.fsi.2010.08.005
Source: PubMed

ABSTRACT Toll-like receptors (TLRs) are essential for activation of the innate immune system in response to invading pathogens. TLR14, which is unique to fish, has been identified in several fish species, but its function is unclear. In this study, Japanese flounder (Paralichthys olivaceus) TLR14 gene (JfTLR14) was cloned and its expression profiles were analyzed after infection with viral hemorrhagic septicemia virus, gram-positive Streptococcus iniae and gram-negative Edwardsiella tarda. The coding region of JfTLR14 cDNA was 2,607 bp, encoding 878 amino acid residues. JfTLR14 was highly expressed in head kidney of healthy flounder. In response to infection with VHSV and S. iniae, the JfTLR14 gene was up-regulated at only 1 day post-infection (dpi). However, E. tarda infection increased JfTLR14 gene expression from 1 to 6 dpi. These results imply that JfTLR14 participates more in the immune response against E. tarda infection than in the immune responses to other pathogen infections.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pattern recognition receptors (PRRs) recognize the conserved molecular structure of pathogens and trigger the signaling pathways that activate immune cells in response to pathogen infection. Toll-like receptors (TLRs) are the first and best characterized innate immune receptors. To date, at least 20 TLR types (TLR1, 2, 3, 4, 5M, 5S, 7, 8, 9, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25, and 26) have been found in more than a dozen of fish species. However, of the TLRs identified in fish, direct evidence of ligand specificity has only been shown for TLR2, TLR3, TLR5M, TLR5S, TLR9, TLR21, and TLR22. Some studies have suggested that TLR2, TLR5M, TLR5S, TLR9, and TLR21 could specifically recognize PAMPs from bacteria. In addition, other TLRs including TLR1, TLR4, TLR14, TLR18, and TLR25 may also be sensors of bacteria. TLR signaling pathways in fish exhibit some particular features different from that in mammals. In this review, the ligand specificity and signal pathways of TLRs that recognize bacteria in fish are summarized. References for further studies on the specificity for recognizing bacteria using TLRs and the following reactions triggered are discussed. In-depth studies should be continuously performed to identify the ligand specificity of all TLRs in fish, particularly non-mammalian TLRs, and their signaling pathways. The discovery of TLRs and their functions will contribute to the understanding of disease resistance mechanisms in fish and provide new insights for drug intervention to manipulate immune responses.
    Fish &amp Shellfish Immunology 09/2014; DOI:10.1016/j.fsi.2014.09.022 · 3.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The acute-phase response (APR) is an important systemic reaction that occurs within hours of an inflammatory signal caused by physical bodily injury or microbial infection. To investigate the APR of the olive flounder (Paralichthys olivaceus) following infection with a pathogen, we established an expressed sequence tag (EST)-based cDNA microarray chip composed of 13,061 PCR-amplified cDNAs encoding unique genes selected from an olive flounder EST analysis. Microarray analyses showed that the set of genes involved in the APR was strongly up-regulated in the liver of the olive flounder after infection with Edwardsiella tarda. Among the up-regulated genes, catechol-O-methyltransferase domain-containing protein 1, six-transmembrane prostate protein, haptoglobin precursor, and toll-like receptor 5 soluble form were particularly strongly up-regulated. Interestingly, the toll-like receptor 5 soluble form, which has not yet been detected in mammals, was up-regulated as much as 250-fold upon E. tarda infection. These results suggest that the APR mechanism of fish may be regulated differently from that of mammals. The data described here contribute toward our collective understanding of APR, especially in fish.
    Veterinary Immunology and Immunopathology 09/2014; 161(1-2). DOI:10.1016/j.vetimm.2014.07.002 · 1.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor 22 (TLR22) is present in teleost but not in mammals. Among Indian farmed carps, Catla catla is relatively more resistant than Labeo rohita to Argulus siamensis lice infection. TLR22 is believed to be associated with innate immunity against ectoparasite infection. To investigate the TLR22 mediated immunity against argulosis, we have cloned and characterized TLR22 genes of L. rohita (rTLR22) and C. catla (cTLR22). The full-length cDNAs of rTLR22 and cTLR22 contained an open reading frame of 2838 and 2841 nucleotides, respectively; bearing the typical structural features. Phylogenetically rTLR22/cTLR22 was most closely related to Cyprinus carpio (common carp) counterpart, having highest sequence identity of 86.0%. The TIR domain remained highly conserved with 90% identity within freshwater fishes. The sequence information of cDNA and genomic DNA together revealed that the rTLR22/cTLR22 genes are encoded by uninterrupted exons. The co-habitation challenge study with A. siamensis infection confirmed that C. catla is comparatively more resistant than L. rohita. Further, comparative mRNA expression profile in immune relevant tissues also suggested about the participatory role of TLR22 during lice infection. However, TLR22 might not solely be involved in conferring relative resistance among carp species against argulosis.
    Developmental & Comparative Immunology 07/2014; DOI:10.1016/j.dci.2014.06.016 · 3.71 Impact Factor