Article

Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation.

Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Current biology: CB (Impact Factor: 10.99). 09/2010; 20(17):1580-7. DOI: 10.1016/j.cub.2010.07.041
Source: PubMed

ABSTRACT Homeostasis in the Drosophila midgut is maintained by stem cells [1, 2]. The intestinal epithelium contains two types of differentiated cells that are lost and replenished: enteroendocrine (EE) cells and enterocytes (ECs). Intestinal stem cells (ISCs) are the only cells in the adult midgut that proliferate [3, 4], and ISC divisions give rise to an ISC and an enteroblast (EB), which differentiates into an EC or an EE cell [3-5]. If the midgut epithelium is damaged, then ISC proliferation increases [6-12]. Damaged ECs express secreted ligands (Unpaired proteins) that activate Jak-Stat signaling in ISCs and EBs to promote their proliferation and differentiation [7, 9, 13, 14]. We show that the Hippo pathway components Warts and Yorkie mediate a transition from low- to high-level ISC proliferation to facilitate regeneration. The Hippo pathway regulates growth in diverse organisms and has been linked to cancer [15, 16]. Yorkie is activated in ECs in response to tissue damage or activation of the damage-sensing Jnk pathway. Activation of Yorkie promotes expression of unpaired genes and triggers a nonautonomous increase in ISC proliferation. Our observations uncover a role for Hippo pathway components in regulating stem cell proliferation and intestinal regeneration.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies illuminate a complex relationship between the control of stem cell division and intestinal tissue organization in the model system Drosophila melanogaster. Host and microbial signals drive intestinal proliferation to maintain an effective epithelial barrier. While it is widely assumed that proliferation induces dysplasia and shortens the lifespan of the host, the phenotypic consequences of deregulated intestinal proliferation for an otherwise healthy host remain unexplored. To address this question, we genetically isolated and manipulated the cell cycle programs of adult stem cells and enterocytes. Our studies revealed that cell cycle alterations led to extensive cell death and morphological disruptions. Despite the extensive tissue damage, we did not observe an impact on longevity, suggesting a remarkable degree of plasticity in intestinal function.
    Journal of Biological Chemistry 08/2014; · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deregulation of the endocytic machinery has been implicated in human cancers. However, the mechanism by which endocytic defects drive cancer development remains to be clarified. Here, we find through a genetic screen in Drosophila that loss of Rab5, a protein required for early endocytic trafficking, drives non-autonomous cell proliferation in imaginal epithelium. Our genetic data indicate that dysfunction of Rab5 leads to cell-autonomous accumulation of Eiger (a TNF homolog) and EGF receptor (EGFR), which causes activation of downstream JNK and Ras signaling, respectively. JNK signaling and its downstream component Cdc42 cooperate with Ras signaling to induce upregulation of a secreted growth factor Upd (an IL-6 homolog) through inactivation of the Hippo pathway. Such non-autonomous tissue growth triggered by Rab5 defect could contribute to epithelial homeostasis as well as cancer development within heterogeneous tumor microenvironment.
    Developmental Biology 11/2014; · 3.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Similar to the mammalian intestine, the Drosophila adult midgut has resident stem cells that support growth and regeneration. How the niche regulates intestinal stem cell activity in both mammals and flies is not well understood. Here, we show that the conserved germinal center protein kinase Misshapen restricts intestinal stem cell division by repressing the expression of the JAK-STAT pathway ligand Upd3 in differentiating enteroblasts. Misshapen, a distant relative to the prototypic Warts activating kinase Hippo, interacts with and activates Warts to negatively regulate the activity of Yorkie and the expression of Upd3. The mammalian Misshapen homolog MAP4K4 similarly interacts with LATS (Warts homolog) and promotes inhibition of YAP (Yorkie homolog). Together, this work reveals that the Misshapen-Warts-Yorkie pathway acts in enteroblasts to control niche signaling to intestinal stem cells. These findings also provide a model in which to study requirements for MAP4K4-related kinases in MST1/2-independent regulation of LATS and YAP. Copyright © 2014 Elsevier Inc. All rights reserved.
    Developmental cell. 11/2014; 31(3):291-304.

Preview

Download
0 Downloads
Available from