Article

Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival

Department of Oncology, Georgetown University, and Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA.
Molecular Cancer (Impact Factor: 5.4). 08/2010; 9:221. DOI: 10.1186/1476-4598-9-221
Source: PubMed

ABSTRACT Musashi1 (Msi1) is a conserved RNA-binding protein that regulates the Notch and Wnt pathways, and serves as a stem cell marker in the breast and other tissues. It is unknown how Msi1 relates to other breast cancer markers, whether it denotes tumor initiating cells (TICs), and how it affects gene expression and tumor cell survival in breast cancer cells.
Msi1 expression was analyzed in 20 breast cancer cell lines and in 140 primary breast tumors by western blotting and immunohistochemistry, respectively. Lentivirus RNA interference was used to reduce Msi1 expression in breast cancer cell lines MCF-7 and T47D grown as spheroid cultures and to assess stem cell gene expression and the growth of these cell lines as xenografts. In normal human breast tissue, Msi1 was expressed in 10.6% of myoepithelum and 1.2% of ductal epithelium in the terminal ductal lobular unit (TDLU), whereas, less than 0.05% of ductal epithelium and myoepithelium in large ducts outside the TDLU expressed Msi1. Msi1 was expressed in 55% of the breast cancer cell lines and correlated with ErbB2 expression in 50% of the cell lines. Msi1 was expressed in 68% of primary tumors and in 100% of lymph node metastases, and correlated with 5 year survival. Msi1 was enriched in CD133+ MCF-7 and T47D cells and in spheroid cultures of these cells, and Msi1 'knockdown' (KD) with a lentivirus-expressed shRNA decreased the number and size of spheroid colonies. Msi1 KD reduced Notch1, c-Myc, ErbB2 and pERK1/2 expression, and increased p21CIP1 expression, which is consistent with known Msi1 target mRNAs. Msi1 KD also reduced the expression of the somatic and embryonic stem cell markers, CD133, Bmi1, Sox2, Nanog and Oct4. Xenografts of MCF-7 and T47D Msi1 KD cells resulted in a marked reduction of tumor growth, reduced Msi1 and Notch1 expression and increased p21CIP1 expression.
Msi1 is a negative prognostic indicator of breast cancer patient survival, and is indicative of tumor cells with stem cell-like characteristics. Msi1 KD reduces tumor cell survival and tumor xenograft growth, suggesting that it may represent a novel target for drug discovery.

0 Followers
 · 
205 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Musashi-1 (MSI1) is an RNA-binding protein that acts as a translation activator or repressor of target mRNAs. The best-characterized MSI1 target is Numb mRNA, whose encoded protein negatively regulates Notch signaling. Additional MSI1 targets include the mRNAs for the tumor suppressor protein APC that regulates Wnt signaling and the cyclin-dependent kinase inhibitor P21(WAF-1). We hypothesized that increased expression of NUMB, P21 and APC, through inhibition of MSI1 RNA-binding activity might be an effective way to simultaneously downregulate Wnt and Notch signaling, thus blocking the growth of a broad range of cancer cells. We used a fluorescence polarization assay to screen for small molecules that disrupt the binding of MSI1 to its consensus RNA binding site. One of the top hits was (-)-gossypol (Ki = 476 ± 273 nM), a natural product from cottonseed, known to have potent anti-tumor activity and which has recently completed Phase IIb clinical trials for prostate cancer. Surface plasmon resonance and nuclear magnetic resonance studies demonstrate a direct interaction of (-)-gossypol with the RNA binding pocket of MSI1. We further showed that (-)-gossypol reduces Notch/Wnt signaling in several colon cancer cell lines having high levels of MSI1, with reduced SURVIVIN expression and increased apoptosis/autophagy. Finally, we showed that orally administered (-)-gossypol inhibits colon cancer growth in a mouse xenograft model. Our study identifies (-)-gossypol as a potential small molecule inhibitor of MSI1-RNA interaction, and suggests that inhibition of MSI1's RNA binding activity may be an effective anti-cancer strategy. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
    Molecular Oncology 04/2015; DOI:10.1016/j.molonc.2015.03.014 · 5.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MOTIVATION: Post-transcriptional and co-transcriptional regulation are a crucial link between genotype and phenotype. The central players are the RNA-binding proteins, and experimental technologies (such as CLIP- and RIP-seq) for probing their activities have advanced rapidly over the course of the past decade. Statistically robust, flexible computational methods for binding site identification from high-throughput immunoprecipitation assays are largely lacking however. RESULTS: We introduce a method for site identification which provides four key advantages over previous methods: (1) it can be applied on all variations of CLIP and RIP-seq technologies, (2) it accurately models the underlying read-count distributions, (3) it allows external covariates, such as transcript abundance (which we demonstrate is highly correlated with read count) to inform the site identification process, and (4) it allows for direct comparison of site usage across cell-types or conditions. AVAILABILITY: We have implemented our method in a software tool called Piranha. Source code and binaries, licensed under the GNU General Public License (version 3) are freely available for download from http://smithlab.usc.edu CONTACT: andrewds@usc.edu.
    Bioinformatics 09/2012; 28(23). DOI:10.1093/bioinformatics/bts569 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mRNA translational control protein, Musashi, plays a critical role in cell fate determination through sequence-specific interactions with select target mRNAs. In proliferating stem cells, Musashi exerts repression of target mRNAs to promote cell cycle progression. During stem cell differentiation, Musashi target mRNAs are de-repressed and translated. Recently, we have reported an obligatory requirement for Musashi to direct translational activation of target mRNAs during Xenopus oocyte meiotic cell cycle progression. Despite the importance of Musashi in cell cycle regulation, only a few target mRNAs have been fully characterized. In this study, we report the identification and characterization of a new Musashi target mRNA in Xenopus oocytes. We demonstrate that progesterone-stimulated translational activation of the Xenopus Musashi1 mRNA is regulated through a functional Musashi binding element (MBE) in the Musashi1 mRNA 3' untranslated region (3' UTR). Mutational disruption of the MBE prevented translational activation of Musashi1 mRNA and its interaction with Musashi protein. Further, elimination of Musashi function through microinjection of inhibitory antisense oligonucleotides prevented progesterone-induced polyadenylation and translation of the endogenous Musashi1 mRNA. Thus, Xenopus Musashi proteins regulate translation of the Musashi1 mRNA during oocyte maturation. Our results indicate that the hierarchy of sequential and dependent mRNA translational control programs involved in directing progression through meiosis are reinforced by an intricate series of nested, positive feedback loops, including Musashi mRNA translational autoregulation. These autoregulatory positive feedback loops serve to amplify a weak initiating signal into a robust commitment for the oocyte to progress through the cell cycle and become competent for fertilization.
    Molecular Reproduction and Development 08/2012; 79(8):553-63. DOI:10.1002/mrd.22060 · 2.68 Impact Factor