Article

B-cell targeted therapies in human autoimmune diseases: an updated perspective

ITGR Biomarker Discovery Group, Genentech, South San Francisco, CA 94080, USA.
Immunological Reviews (Impact Factor: 12.91). 09/2010; 237(1):264-83. DOI: 10.1111/j.1600-065X.2010.00945.x
Source: PubMed

ABSTRACT The advent of therapies that specifically target the B-lymphocyte lineage in human disease has rejuvenated interest in the mechanistic biology by which B cells mediate autoimmunity. B cells have a multitude of effector functions including production of self-reactive antibodies, ability to present antigen to T lymphocytes in the context of costimulation, involvement in generation and maintenance of neo-organogenesis at sites of disease, and opposing function through production of both immunostimulatory and immunomodulatory cytokines. In this review, we first discuss the role of B cells in driving autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and Sjögren's syndrome, and discuss how studies in these diseases have revealed differentially important roles for the multiple B-cell effector functions. These data reveal the complex and interrelated roles of B cells working in concert with other components of the innate and adaptive immune system to drive pathogenesis. We then focus on data from mouse and human in which B cells in the setting of disease have been targeted with drugs directed against CD20, CD22, and the BAFF (B-cell activating factor belonging to the tumor necrosis factor family)/APRIL (a proliferation inducing ligand) pathways. Pre-clinical studies in animal models in addition to and clinical trials targeting B cells have added further to the understanding of the differential roles B cells play in disease both through demonstration of clinical efficacy in the context of B-cell depletion or modulation, and also by failure of B-cell targeting in some diseases and disease patient subgroups. Moving forward, it will be imperative to apply these lessons to new interventional trials to ensure better targeting of the B-cell lineage and concomitantly better selection of patients most likely to benefit from these therapies.

0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune checkpoint regulators are critical modulators of the immune system, allowing the initiation of a productive immune response and preventing the onset of autoimmunity. Co-inhibitory and co-stimulatory immune checkpoint receptors are required for full T-cell activation and effector functions such as the production of cytokines. In autoimmune rheumatic diseases, impaired tolerance leads to the development of diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Sjogren's syndrome. Targeting the pathways of the inhibitory immune checkpoint molecules CD152 (cytotoxic T lymphocyte antigen-4) and CD279 (programmed death-1) in cancer shows robust anti-tumor responses and tumor regression. This observation suggests that, in autoimmune diseases, the converse strategy of engaging these molecules may alleviate inflammation owing to the success of abatacept (CD152-Ig) in rheumatoid arthritis patients. We review the preclinical and clinical developments in targeting immune checkpoint regulators in rheumatic disease.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has documented a role for B cells and antibodies (Abs) in the immunity against Mycobacterium tuberculosis (Mtb). Passive transfer studies with monoclonal antibodies (mAbs) against mycobacterial antigens have shown protection against the tubercle bacillus. B cells and Abs are believed to contribute to an enhanced immune response against Mtb by modulating various immunological components in the infected host including the T-cell compartment. Nevertheless, the extent and contribution of B cells and Abs to protection against Mtb remains uncertain. In this article we summarize the most relevant findings supporting the role of B cells and Abs in the defense against Mtb and discuss the potential mechanisms of protection.
    Cold Spring Harbor Perspectives in Medicine 10/2014; 5(3). DOI:10.1101/cshperspect.a018432 · 7.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Among the host of distressing pathophysiological and psychosocial symptoms, fatigue is the most prevalent complaint in patients with systemic lupus erythematosus (SLE). This review is to update the current findings on non-pharmacological, pharmacological, and modality strategies to manage fatigue in patients with SLE and to provide some recommendations on optimal management of fatigue based on the best available evidence. We performed a systematic literature search of the PubMed and Scopus databases to identify publications on fatigue management in patients with SLE. Based on the studies reported in the literature, we identified nine intervention strategies that have the potential to alleviate fatigue in patients with SLE. Of the nine strategies, aerobic exercise and belimumab seem to have the strongest evidence of treatment efficacy. N-acetylcysteine and ultraviolet-A1 phototherapy demonstrated low-to-moderate levels of evidence. Psychosocial interventions, dietary manipulation (low calorie or glycemic index diet) aiming for weight loss, vitamin D supplementation, and acupuncture all had weak evidence. Dehydroepiandrosterone is not recommended due to a lack of evidence for its efficacy. In addition to taking treatment efficacy and side effects into consideration, clinicians should consider factors such as cost of treatment, commitments, and burden to the patient when selecting fatigue management strategies for patients with SLE. Any comorbidities, such as psychological distress, chronic pain, sleep disturbance, obesity, or hypovitaminosis D, associated with fatigue should be addressed.
    Therapeutics and Clinical Risk Management 01/2014; 10:775-86. DOI:10.2147/TCRM.S56063 · 1.34 Impact Factor