Article

Intrachromosomal Mitotic Nonallelic Homologous Recombination Is the Major Molecular Mechanism Underlying Type-2 NF1 Deletions

Institute of Human Genetics, University of Ulm, Ulm, Germany.
Human Mutation (Impact Factor: 5.05). 10/2010; 31(10):1163-73. DOI: 10.1002/humu.21340
Source: PubMed

ABSTRACT Nonallelic homologous recombination (NAHR) is responsible for the recurrent rearrangements that give rise to genomic disorders. Although meiotic NAHR has been investigated in multiple contexts, much less is known about mitotic NAHR despite its importance for tumorigenesis. Because type-2 NF1 microdeletions frequently result from mitotic NAHR, they represent a good model in which to investigate the features of mitotic NAHR. We have used microsatellite analysis and SNP arrays to distinguish between the various alternative recombinational possibilities, thereby ascertaining that 17 of 18 type-2 NF1 deletions, with breakpoints in the SUZ12 gene and its highly homologous pseudogene, originated via intrachromosomal recombination. This high proportion of intrachromosomal NAHR causing somatic type-2 NF1 deletions contrasts with the interchromosomal origin of germline type-1 NF1 microdeletions, whose breakpoints are located within the NF1-REPs (low-copy repeats located adjacent to the SUZ12 sequences). Further, meiotic NAHR causing type-1 NF1 deletions occurs within recombination hotspots characterized by high GC-content and DNA duplex stability, whereas the type-2 breakpoints associated with the mitotic NAHR events investigated here do not cluster within hotspots and are located within regions of significantly lower GC-content and DNA stability. Our findings therefore point to fundamental mechanistic differences between the determinants of mitotic and meiotic NAHR.

Download full-text

Full-text

Available from: David N Cooper, Jun 17, 2015
0 Followers
 · 
232 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., <30 bp) deletions than do other vertebrate genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.
    Journal of Molecular Evolution 01/2015; 80(2). DOI:10.1007/s00239-014-9663-7 · 1.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Neurofibromatosis type-1 (NF1) is caused by mutations of the NF1 gene at 17q11.2. In 95% of non-founder NF1 patients, NF1 mutations are identifiable by means of a comprehensive mutation analysis. 5-10% of these patients harbour microdeletions encompassing the NF1 gene and its flanking regions. NF1 is characterised by tumours of the peripheral nerve sheaths, the pathognomonic neurofibromas. Considerable inter- and intra-familial variation in expressivity of the disease has been observed which is influenced by genetic modifiers unrelated to the constitutional NF1 mutation. The number of plexiform neurofibromas (PNF) in NF1 patients is however a highly heritable genetic trait. Recently, SNP rs2151280 located within the non-coding RNA gene ANRIL at 9p21.3, was identified as being strongly associated with PNF number in a family-based association study. The T-allele of rs2151280, which correlates with reduced ANRIL expression, appears to be associated with higher PNF number. ANRIL directly binds to the SUZ12 protein, an essential component of polycomb repressive complex 2, and is required for SUZ12 occupancy of the CDKN2A/CDKN2B tumour suppressor genes as well as for their epigenetic silencing. METHODS: Here, we explored a potential association of PNF number and PNF volume with SNP rs2151280 in 29 patients with constitutional NF1 microdeletions using the exact Cochran-Armitage test for trends and the exact Mann--Whitney--Wilcoxon test. Both the PNF number and total tumour volume in these 29 NF1 patients were assessed by whole-body MRI. The NF1 microdeletions observed in these 29 patients encompassed the NF1 gene as well as its flanking regions, including the SUZ12 gene. RESULTS: In the 29 microdeletion patients investigated, neither the PNF number nor PNF volume was found to be associated with the T-allele of rs2151280. CONCLUSION: Our findings imply that, at least in patients with NF1 microdeletions, PNF susceptibility is not associated with rs2151280. Although somatic inactivation of the NF1 wild-type allele is considered to be the PNF-initiating event in NF1 patients with intragenic mutations and patients with NF1 microdeletions, both patient groups may differ with regard to tumour progression because of the heterozygous constitutional deletion of SUZ12 present only in patients with NF1 microdeletions.
    BMC Medical Genetics 10/2012; 13(1):98. DOI:10.1186/1471-2350-13-98 · 2.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large deletions of the NF1 gene and its flanking regions are frequently associated with a severe clinical manifestation. Different types of gross NF1 deletion have been identified that are distinguishable both by their size and the number of genes included within the deleted regions. Type-1 NF1 deletions encompass 1.4 Mb and include 14 genes, whereas the much less common type-2 NF1 deletions span 1.2 Mb and contain 13 genes. Genotype-phenotype correlations in patients with large NF1 deletions are likely to be influenced by the nature and number of the genes deleted in addition to the NF1 gene. Whereas the clinical phenotype associated with type-1 NF1 deletions has been well documented, the detailed clinical characterization of patients with non-mosaic type-2 NF1 deletions has not so far been reported. In the present report we characterized two Caucasian European patients with non-mosaic (germline) type-2 NF1 deletions. Our first patient was a 13-year-old girl with dysmorphic facial features, mild developmental delay, large hands and feet, hyperflexibility of the joints, macrocephaly and T2 hyperintensities in the brain. A whole-body magnetic resonance imaging scan indicated two internal plexiform neurofibromas. Our second patient was an 18-year-old man who exhibited dysmorphic facial features, developmental delay, learning disability, large hands and feet, hyperflexibility of the joints, macrocephaly and a very high subcutaneous and internal tumor load as measured volumetrically on whole-body magnetic resonance imaging scans. At the age of 18 years, he developed a malignant peripheral nerve sheath tumor and died from secondary complications. Both our patients exhibited cardiovascular malformations. Our two patients with non-mosaic type-2 NF1 deletions exhibited clinical features that have been reported in individuals with germline type-1 NF1 deletions. Therefore, a severe disease manifestation is not confined to only patients with type-1 NF1 deletions but may also occur in individuals with type-2 NF1 deletions. Our findings support the concept of an NF1 microdeletion syndrome with severe clinical manifestation that is caused by type-1 as well as type-2 NF1 deletions.
    Journal of Medical Case Reports 12/2011; 5:577. DOI:10.1186/1752-1947-5-577