Novel role of C terminus of Hsc70-interacting protein (CHIP) ubiquitin ligase on inhibiting cardiac apoptosis and dysfunction via regulating ERK5-mediated degradation of inducible cAMP early repressor

Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York 14642, USA.
The FASEB Journal (Impact Factor: 5.48). 12/2010; 24(12):4917-28. DOI: 10.1096/fj.10-162636
Source: PubMed

ABSTRACT Growing evidence indicates a critical role of ubiquitin-proteosome system in apoptosis regulation. A cardioprotective effect of ubiquitin (Ub) ligase of the C terminus of Hsc70-interacting protein (CHIP) on myocytes has been reported. In the current study, we found that the cardioprotective effect of insulin growth factor-1 (IGF-1) was mediated by ERK5-CHIP signal module via inducible cAMP early repressor (ICER) destabilization. In vitro runoff assay and Ub assay showed ICER as a substrate of CHIP Ub ligase. Both disruption of ERK5-CHIP binding with inhibitory helical linker domain fragment (aa 101-200) of CHIP and the depletion of ERK5 by siRNA inhibited CHIP Ub ligase activity, which suggests an obligatory role of ERK5 on CHIP activation. Depletion of CHIP, using siRNA, inhibited IGF-1-mediated reduction of isoproterenol-mediated ICER induction and apoptosis. In diabetic mice subjected to myocardial infarction, the CHIP Ub ligase activity was decreased, with an increase in ICER expression. These changes were attenuated significantly in a cardiac-specific constitutively active form of MEK5α transgenic mice (CA-MEK5α-Tg) previously shown to have greater functional recovery. Furthermore, pressure overload-mediated ICER induction was enhanced in heterozygous CHIP(+/-) mice. We identified ICER as a novel CHIP substrate and that the ERK5-CHIP complex plays an obligatory role in inhibition of ICER expression, cardiomyocyte apoptosis, and cardiac dysfunction.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cells (CSCs) have several distinctive characteristics, including high metastatic potential, tumor-initiating potential, and properties that resemble normal stem cells such as self-renewal, differentiation, and drug efflux. Because of these characteristics, CSC is regarded to be responsible for cancer progression and patient prognosis. In our previous study, we showed that a ubiquitin E3 ligase carboxyl terminus of Hsc70-interacting protein (CHIP) suppressed breast cancer malignancy. Moreover, a recent clinical study reported that CHIP expression levels were associated with favorable prognostic parameters of patients with breast cancer. Here we show that CHIP suppresses CSC properties in a population of breast cancer cells. CHIP depletion resulted in an increased proportion of CSCs among breast cancers when using several assays to assess CSC properties. From our results, we propose that inhibition of CSC properties may be one of the functions of CHIP as a suppressor of cancer progression.
    Biochemical and Biophysical Research Communications 09/2014; 452(4). DOI:10.1016/j.bbrc.2014.09.011 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ser/Thr kinase NIK mediates the activation of the noncanonical NF-κB2 pathway, and it plays an important role in regulating immune cell development and liver homeostasis. NIK levels are extremely low in quiescent cells due to ubiquitin/proteasome-mediated degradation, and cytokines stimulate NIK activation through increasing NIK stability; however, regulation of NIK stability is not fully understood. We here identified CHIP as a new negative regulator of NIK. CHIP contains three N-terminal tetratricopeptide repeats (TPRs), a middle dimerization domain, and a C-terminal U-box. The U-box domain contains ubiquitin E3 ligase activity that promotes ubiquitination of CHIP-bound partners. We observed that CHIP bound to NIK via its TPR domain. In both HEK293 and primary hepatocytes, overexpression of CHIP markedly decreased NIK levels at least in part through increasing ubiquitination and degradation of NIK. Accordingly, CHIP suppressed NIK-induced activation of the noncanonical NF-κB2 pathway. CHIP also bound to TRAF3, and CHIP and TRAF3 acted coordinately to efficiently promote NIK degradation. The TPR but not the U-box domain was required for CHIP to promote NIK degradation. In mice, hepatocyte-specific overexpression of NIK resulted in liver inflammation and injury, leading to death, and liver-specific expression of CHIP reversed the detrimental effects of hepatic NIK. Our data suggest that CHIP/TRAF3/NIK interactions recruit NIK to E3 ligase complexes for ubiquitination and degradation, thus maintaining NIK at low levels. Defects in CHIP regulation of NIK may result in aberrant NIK activation in the liver, contributing to live injury, inflammation, and disease. Copyright © 2015, The American Society for Biochemistry and Molecular Biology.
    Journal of Biological Chemistry 03/2015; 290(18). DOI:10.1074/jbc.M114.635086 · 4.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because of its ability to regulate the abundance of selected proteins the ubiquitin proteasome system (UPS) plays an important role in neuronal and synaptic plasticity. As a result various stages of learning and memory depend on UPS activity. Drug addiction, another phenomenon that relies on neuroplasticity, shares molecular substrates with memory processes. However, the necessity of proteasome-dependent protein degradation for the development of addiction has been poorly studied. Here we first review evidences from the literature that drugs of abuse regulate the expression and activity of the UPS system in the brain. We then provide a list of proteins which have been shown to be targeted to the proteasome following drug treatment and could thus be involved in neuronal adaptations underlying behaviors associated with drug use and abuse. Finally we describe the few studies that addressed the need for UPS-dependent protein degradation in animal models of addiction-related behaviors.
    Frontiers in Molecular Neuroscience 01/2014; 7:99. DOI:10.3389/fnmol.2014.00099