Article

ATG12 Conjugation to ATG3 Regulates Mitochondrial Homeostasis and Cell Death

Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
Cell (Impact Factor: 33.12). 08/2010; 142(4):590-600. DOI: 10.1016/j.cell.2010.07.018
Source: PubMed

ABSTRACT ATG12, an ubiquitin-like modifier required for macroautophagy, has a single known conjugation target, another autophagy regulator called ATG5. Here, we identify ATG3 as a substrate for ATG12 conjugation. ATG3 is the E2-like enzyme necessary for ATG8/LC3 lipidation during autophagy. ATG12-ATG3 complex formation requires ATG7 as the E1 enzyme and ATG3 autocatalytic activity as the E2, resulting in the covalent linkage of ATG12 onto a single lysine on ATG3. Surprisingly, disrupting ATG12 conjugation to ATG3 does not affect starvation-induced autophagy. Rather, the lack of ATG12-ATG3 complex formation produces an expansion in mitochondrial mass and inhibits cell death mediated by mitochondrial pathways. Overall, these results unveil a role for ATG12-ATG3 in mitochondrial homeostasis and implicate the ATG12 conjugation system in cellular functions distinct from the early steps of autophagosome formation.

Download full-text

Full-text

Available from: Srirupa Roy, Jun 20, 2015
0 Followers
 · 
197 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following the discovery of protein modification by the small, highly conserved ubiquitin polypeptide, a number of distinct ubiquitin-like proteins (Ubls) have been found to function as protein modifiers as well. These Ubls, which include SUMO, ISG15, Nedd8, and Atg8, function as critical regulators of many cellular processes, including transcription, DNA repair, signal transduction, autophagy, and cell-cycle control. A growing body of data also implicates the dysregulation of Ubl-substrate modification and mutations in the Ubl-conjugation machinery in the etiology and progression of a number of human diseases. The primary aim of this review is to summarize the latest developments in our understanding of the different Ubl-protein modification systems, including the shared and unique features of these related pathways.
    Annual Review of Cell and Developmental Biology 02/2006; 22:159-80. DOI:10.1146/annurev.cellbio.22.010605.093503 · 20.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autophagy is a lysosomal degradation pathway that is essential for survival, differentiation, development, and homeostasis. Autophagy principally serves an adaptive role to protect organisms against diverse pathologies, including infections, cancer, neurodegeneration, aging, and heart disease. However, in certain experimental disease settings, the self-cannibalistic or, paradoxically, even the prosurvival functions of autophagy may be deleterious. This Review summarizes recent advances in understanding the physiological functions of autophagy and its possible roles in the causation and prevention of human diseases.
    Cell 02/2008; 132(1):27-42. DOI:10.1016/j.cell.2007.12.018 · 33.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Fanconi anemia pathway is required for the efficient repair of damaged DNA. A key step in this pathway is the monoubiquitination of the FANCD2 protein by the ubiquitin ligase (E3) composed of Fanconi anemia core complex proteins. Here, we show that UBE2T is the ubiquitin-conjugating enzyme (E2) essential for this pathway. UBE2T binds to FANCL, the ubiquitin ligase subunit of the Fanconi anemia core complex, and is required for the monoubiquitination of FANCD2 in vivo. DNA damage in UBE2T-depleted cells leads to the formation of abnormal chromosomes that are a hallmark of Fanconi anemia. In addition, we show that UBE2T undergoes automonoubiquitination in vivo. This monoubiquitination is stimulated by the presence of the FANCL protein and inactivates UBE2T. Therefore, UBE2T is the E2 in the Fanconi anemia pathway and has a self-inactivation mechanism that could be important for negative regulation of the Fanconi anemia pathway.
    Molecular Cell 09/2006; 23(4):589-96. DOI:10.1016/j.molcel.2006.06.024 · 14.46 Impact Factor