Use of bioluminescence imaging to track neutrophil migration and its inhibition in experimental colitis

Alimentary Pharmabiotic Centre, University College Cork, National University of Ireland, Cork, Ireland.
Clinical & Experimental Immunology (Impact Factor: 3.04). 10/2010; 162(1):188-96. DOI: 10.1111/j.1365-2249.2010.04234.x
Source: PubMed

ABSTRACT Inflammatory bowel disease (IBD) is associated with neutrophil infiltration into the mucosa and crypt abscesses. The chemokine interleukin (IL)-8 [murine homologues (KC) and macrophage inflammatory protein (MIP)-2] and its receptor CXCR2 are required for neutrophil recruitment; thus, blocking this engagement is a potential therapeutic strategy. In the present study, we developed a preclinical model of neutrophil migration suitable for investigating the biology of and testing new drugs that target neutrophil trafficking. Peritoneal exudate neutrophils from transgenic β-actin-luciferase mice were isolated 12h after intraperitoneal injection with thioglycollate, and were assessed phenotypically and functionally. Exudate cells were injected intravenously into recipients with dextran sodium sulphate (DSS)-induced colitis followed by bioluminescence imaging of whole-body and ex vivo organs at 2, 4 and 16-22h post-transfer. Anti-KC antibody or an isotype control were administered at 20 µg/mouse 1h before transfer, followed by whole-body and organ imaging 4h post-transfer. The peritoneal exudate consisted of 80% neutrophils, 39% of which were CXCR2(+) . In vitro migration towards KC was inhibited by anti-KC. Ex vivo bioluminescent imaging showed that neutrophil trafficking into the colon of DSS recipients was inhibited by anti-KC 4h post-cell transfer. In conclusion, this study describes a new approach for investigating neutrophil trafficking that can be used in preclinical studies to evaluate potential inhibitors of neutrophil recruitment.

Download full-text


Available from: Lindsay Hall, Sep 26, 2015
1 Follower
63 Reads
  • Source
    • "In the control group animals received water. Disease progression was assessed by monitoring body weight loss, stool consistency and fur texture/posture as previously described [48]. 2.3. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormal accumulation of oncometabolite fumarate and succinate is associated with inhibition of mitochondrial function and carcinogenesis. By competing with α-ketoglutarate, oncometabolites also activate hypoxia inducible factors (HIF), which makes oncometabolite mimetics broadly utilised in hypoxia research. We found that dimethyloxalylglycine (DMOG), a synthetic analogue of α-ketoglutarate, commonly used to induce HIF signalling, inhibits O2 consumption in cancer cell lines HCT116 and PC12, well before activation of HIF pathways. A rapid suppression of cellular respiration was accompanied by a decrease in histone H4 lysine 16 acetylation and not abolished by double knockdown of HIF-1α and HIF-2α. In agreement with this, production of NADH and state 3 respiration in isolated mitochondria were down-regulated by the de-esterified DMOG derivative, N-oxalylglycine. Exploring the roles of DMOG as a putative inhibitor of glutamine / α-ketoglutarate metabolic axis, we found that the observed suppression of OxPhos and compensatory activation of glycolytic ATP flux make cancer cells vulnerable to combined treatment with DMOG and inhibitors of glycolysis. On the other hand, DMOG treatment impairs deep cell deoxygenation in 3D tissue culture models, demonstrating a potential to relieve functional stress imposed by deep hypoxia on tumour, ischemic or inflamed tissues. Indeed, using a murine model of colitis, we found that O2 availability in the inflamed colon tissue rapidly increased after application of DMOG, which could contribute to the known therapeutic effect of this compound. Overall, our results provide new insights into the relationship between mitochondrial function, O2 availability, metabolic reprogramming and associated diseases. Copyright © 2015. Published by Elsevier B.V.
    Biochimica et Biophysica Acta 07/2015; 1847(10). DOI:10.1016/j.bbabio.2015.06.016 · 4.66 Impact Factor
  • Source
    • "Female C57BL/6JOlaHsD mice, weighing 18–20 g (Harlan), received 3% DSS as previously described [27]. Animals were housed at a temperature of 21 °C, 50% humidity and 12:12 h light-dark cycles and fed a standard pellet diet and tap water ad libitum. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease (IBD) is a chronic relapsing inflammation of the gastrointestinal tract. The cytokine TNF-alpha (TNF-α) plays a pivotal role in mediating this inflammatory response. RNA interference holds great promise for specific and selective silencing of aberrantly expressed genes, such as TNF-α in IBD. The aim of this study was to investigate the efficacy of an amphiphilic cationic cyclodextrin (CD) vector for effective TNF-α siRNA delivery to macrophage cells and to mice with induced acute-colitis. The stability of CD.siRNA was examined by gel electrophoresis in biorelevant media reflecting colonic fluids. RAW264.7 cells were transfected with CD.TNF-α siRNA, stimulated with lipopolysaccharide (LPS) and TNF-α and IL-6 responses were measured by PCR and ELISA. Female C57BL/6 mice were exposed to dextran sodium sulphate (DSS) and treated by intrarectal administration with either CD.siRNA TNF-α or a control solution. In vitro, siRNA in CD nanocomplexes remained intact and stable in both fed and fasted simulated colonic fluids. RAW264.7 cells transfected with CD.TNF-α siRNA and stimulated with LPS displayed a significant reduction in both gene and protein levels of TNF-α and IL-6. CD.TNF-α siRNA-treated mice revealed a mild amelioration in clinical signs of colitis, however significant reductions in total colon weight and colonic mRNA expression of TNF-α and IL-6 compared to DSS-control mice were detected. This data indicates the clinical potential of a local CD-based TNF-α siRNA delivery system for the treatment of IBD.
    Journal of Controlled Release 03/2013; 168(1). DOI:10.1016/j.jconrel.2013.03.004 · 7.71 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation plays an important role in a wide range of human diseases such as ischemia-reperfusion injury, arteriosclerosis, cystic fibrosis, inflammatory bowel disease, etc. Neutrophilic accumulation in the inflamed tissues is an essential component of normal host defense against infection, but uncontrolled neutrophilic infiltration can cause progressive damage to the tissue epithelium. The CXC chemokine receptor CXCR2 and its specific ligands have been reported to play critical roles in the pathophysiology of various inflammatory diseases. However, it is unclear how CXCR2 is coupled specifically to its downstream signaling molecules and modulates cellular functions of neutrophils. Here we show that the PDZ scaffold protein NHERF1 couples CXCR2 to its downstream effector phospholipase C (PLC)-β2, forming a macromolecular complex, through a PDZ-based interaction. We assembled a macromolecular complex of CXCR2·NHERF1·PLC-β2 in vitro, and we also detected such a complex in neutrophils by co-immunoprecipitation. We further observed that the CXCR2-containing macromolecular complex is critical for the CXCR2-mediated intracellular calcium mobilization and the resultant migration and infiltration of neutrophils, as disrupting the complex with a cell permeant CXCR2-specific peptide (containing the PDZ motif) inhibited intracellular calcium mobilization, chemotaxis, and transepithelial migration of neutrophils. Taken together, our data demonstrate a critical role of the PDZ-dependent CXCR2 macromolecular signaling complex in regulating neutrophil functions and suggest that targeting the CXCR2 multiprotein complex may represent a novel therapeutic strategy for certain inflammatory diseases.
    Journal of Biological Chemistry 12/2011; 287(8):5744-55. DOI:10.1074/jbc.M111.315762 · 4.57 Impact Factor
Show more